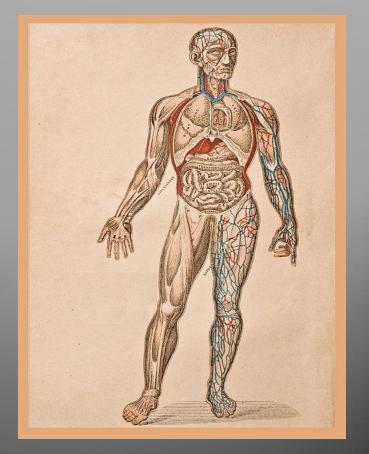
NJHA Pressure Injury Prevention Conference Pharmacologic Impacts on Wound Healing: When Drugs "Break Bad"

Janice M. Beitz, PhD, RN, CS, CNOR, CWOCN-AP, CRNP, MAPWCA, ANEF, FAAN Professor of Nursing, WOCNEP Director School of Nursing-Camden Rutgers University, Camden NJ

Objectives

Participants will:


- Identify common conditions associated with non-wound-related polypharmacy.
- Determine data for drugs that impair wound healing processes.
- 3) Recognize drugs that may contribute to wound healing.
- 4) Explain drugs that may cause wound reactions.
- 5) Describe clinical practices mitigating drug effects

Major Topics

- Normal wound healing processes
- Chronic disease prevalence and wounds
- Drugs and wound healing/wound healing Impairment
- Common and uncommon drug offenders
- Clinical implications for wound professionals

Normal Wound Healing

- Human body "wired" to heal
- Despite many obstacles, most wounds heal
- Not here to discuss this comforting reality
- Here to discuss pharmacologic impact on wound healing and wound generation

Normal Wound Healing

- Four phases overlapping/special cells (keratinocytes, fibroblasts, endothelial cells, macrophages, platelets)
- Hemostasis platelets, growth factors (immediate)
- Inflammation macrophages, leukocytes, mast cells (day 1–4)
- Proliferation fibroblasts, myofibroblasts, endothelial cells
- Remodeling (maturation) (Day 21 2 years) (80% of original strength)

Stages of Wound Healing

Inflammation

- Cell recruitment (neutrophil, monocyte, lymphocytes, macrophage)
- Phagocytosis
- Debridement (PDGF, TGF,-B, TGF-A, IL-2, IFN, EGF, TNF-A)

Maturation

- Wound contraction
- Fibroblasts, epithelial cells
- Vascular maturation and regression
- Remodeling (TNF-A, IL-1, PDGF, TGF-B, EGF)

Hemostasis (Injury)

- Vascular constriction
- Platelet activation
- Blood clotting cascade (PDGF, TGF-B, TGF-A, EGF)

Proliferation

- Release of cytokines
- Cell growth and activation (epithelial cells, fibroblasts, endothelial cells)
- Neovascularization (angiogenesis)
- Granulation tissue formation (PGDF, TGF-B, FGF, IGF, IFN, TGF-A, EGF)

Chronic Wound (Armstrong & Meyr, UptoDate, 2017)

- Defined as wound that is physiologically impaired due to:
 - Inadequate angiogenesis
 - Impaired innervation
 - Impaired cellular migration
- Medications can affect any aspect of wound healing

Scope of Chronic Disease in United States: Mortality and Morbidity

- In 2015, top 10 leading causes of death accounted for approximately 75% of all US deaths
- In 2015, 2,712,630 Americans died (86,212 more than 2014) (CDC, 2017)

Top 10 Causes of Death

- 1) Heart Disease*
- 2) Cancer*
- Chronic Lower
 Respiratory Disease*
- 4) Unintentional injuries
- 5) Stroke*

- 6) Alzheimer's Disease*
- 7) Diabetes*
- 8) Influenza/pneumonia
- 9) Kidney Disease*
- 10) Suicide

*Chronic Disorders

(CDC, 2017)

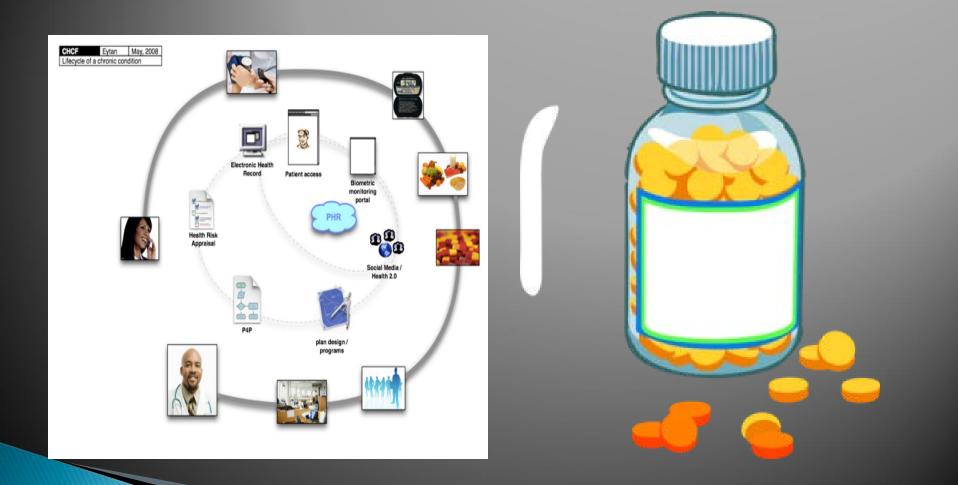
Chronic Diseases in USA

- As of 2012, half of all American adults had one or more chronic diseases
- Constitutes 117 million Americans
- Obesity serious health disorder approaching 50% are obese or overweight
- Diabetes mellitus type 2 pandemic
- Risk behaviors: Little or no exercise, poor dietary habits (fat, calories, salt), smoking (1 in 5 adults), alcohol abuse (CDC, 2017)

Arthritis affects 53 million Americans

Chronic Diseases in USA

- 86% of all US healthcare spending in 2010 was for people with one or more chronic diseases
- In Americans over 65, 3 of 4 have multiple chronic conditions.
- 93% of total Medicare spending in 2012 was for people with multiple chronic conditions (CDC, 2017; CMS, 2012)


Chronic Wounds

- Pressure injuries focus of today's conference
- Venous ulcers
- Arterial ulcers
- Neuropathic (diabetic) ulcers
- Vasculitic and "other" ulcers
- Just about ALL wound patients are receiving medication therapy

Scope of Medication Impact

- Wound healing affected by many drugs and disease processes
- Nearly 50% of Americans take one prescription drug monthly
- Twenty percent take three drugs or more a month
- Eleven percent take five or more drugs (CDC, 2017)
- Thirty-six million Americans use herbals yearly (Ranade & Collins, 2014)
- U.S. herbal use grew for 12th straight year (Crane, 2016)

Critical Nexus: Cl and Polypharmacy

Medications Associated with Wound Healing *Delays*

- Anticoagulants
- Antimicrobials
- Aspirin/NSAIDs
- NSAIDs impair fibroblasts; weaken wound contraction with long-term use
 (Guo et al, 2010)
 Povidone/lodine
 Colchicine

- Dakin's solution
 - Useful and safe if used diluted and for short-term
- Glucocorticoids
- Immunosuppressive agents
 Anti-angiogonosis
- Anti-angiogenesis agents

Medications Hindering Wound Healing

- Antineoplastic agents
 - Reduce RBC and WBC presence
 - Damage keratinocyte
 - May decrease VEGF and angiogenesis
- Colchicine
 - Reduces granulocyte migration
 - Reduces fibroblast
 synthesis

- Vasoconstrictors
 - Decrease tissue perfusion
- Anti-rheumatoid drugs
 - Methotrexate: cytotoxic to T cells and macrophages

 Nicotine and smoking (But NRT does NOT impair healing)

DMARDS and SSI/Delayed Wound Healing

- Kaduta et al (2015) retrospective record review of 1036 elective orthopedic surgery patients
- Looked at risk factors for SSI and DWH
- Risk factors were foot/ankle surgery, total knee arthroplasty, and rheumatoid arthritis (RA) disease duration
- Looked at conventional synthetic DMARDs; looked at biologic DMARDs as variables
- Neither were risk factors
- Why?? drugs stopped 2–4 weeks before surgery
- Restarted infliximab in 4 weeks after surgery; others (Entanercept, Adalimumab, Tocilizumab, Golimumab)
 restarted after healing of surgical wounds

DMARDs and Wound Healing: Case Study

- Gaucher et al, 2017
- 53-year-old male with sarcoidosis and steroid-induced diabetes
- Receiving methotrexate and prednisone
- Developed LLE cellulitis
- Stopped prednisone
- Treated cellulitis
- Four rounds of skin grafting: stopped methotrexate
- Fifth skin graft was successful

Cancer Chemotherapy: Antiangiogenics (Choueiri & Sonpavde, 2017; McIntyre, 2015)

- Use is expanding
 - Bevacizumab (Monoclonal antibody; VEGF-A inhibitor)
 - Aflibercept (VEGF–A, VEGF–B)
 - Sunitinib (Tyrosine kinase inhibitor)
- Can cause impaired wound healing, osteonecrosis of jaw, hand-foot skin reaction, hand-foot syndrome, and bleeding

Steroids

- Notorious inhibitors of wound healing
- Notorious for systemic effects (hyperglycemia, osteoporosis, mood changes)
- Steroids affect cells by altering gene expression after crossing cell membrane
- Consequently affect almost every phase of wound healing
- Degree of inhibition related to <u>potency</u> of steroid
- Long-term usage impact is the challenge: bottom line is immune modulation (and associated derived risks)

Steroids: Specific Effects

- Delay in removal of bacteria and foreign bodies
 Decreased neutrophil and macrophage activity
- Decrease in epithelial regeneration and granulation activity (caused by steroids antimitotic activity)
- Decrease in fibroblast activity
- Over time thinned epidermis inhibits wound contraction
- Yet no problem with acute surgical healing if not long-term use (Treadwell, 2013; Wang et al, 2013)
- And when used topically may *help* healing (e.g., stasis dermatitis)

Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

- Work by inhibiting Cyclooxygenase (COX)
- COX affects arachidonic acid and prostaglandins; blocking has serious effects
- NSAIDs have well known effect on delaying bone healing
- Krischak et al (2007): Found diclofenac inhibited fibroblasts after use in 10 rats (lab testing)
- Can affect ligament health too

NSAIDs and Long Bone Fracture Healing (Jeffcoach et al, 2014)

- Retrospective study of all orthopedic patients with femur, tibia, and/or humerus fractures between October 2009 and September 2011 – University of Tennessee Level 1 Trauma Center
- 1,901 patients with LBFs
- Assessed for complications: Nonunion/malunion, infection
- 60 patients had complications
- Logistic regression calculated ORs
- Patient more likely to have complication if received NSAIDs postop (OR 2.17) or if they were smokers (OR 3.19)

Recommend avoidance of NSAID use in traumatic LBF

NSAID Use and Postoperative Gastrointestinal Surgery

- Large retrospective study of adult GI surgery patients between 2008 and 2012
- Among 398,752 patients, 55% underwent colorectal surgery and 45% had non-colorectal GI surgery.
- Five percent of all received ketorolac (IV)
- These patients had higher odds of re-intervention (OR 1.20), emergency room visit (OR 1.44) and 30day readmission (OR 1.11) and readmission for anastomotic complications (OR 1.2)
- Use great caution when using IV ketorolac in patients undergoing GI surgery

Animal Studies Give Some Insights: Arslantas (2015)

- Tested 42 rats with oral sildenafil (10mg/kg) in 1cc distilled water via NG tube vs. sodium chloride injection in intraperitoneum (21 exp; 21 control)
- Created an ischemic skin wound on rats' abdomens
- Checked healing at days 3,5,10 on 7 rats in each group
- Theoretically sildenafil (PDE-5 inhibitor) should <u>help</u> healing
- Sildenafil significantly <u>reduced</u> re-epithelialization, neovascularization, granulation tissue and number of inflammatory cells on day 3
- Increased inflammatory cells on day 10
- Oral vs. <u>Topical</u> sildenafil: have differential effects on wounds

Other Side Of The Coin

Medications *Improving* Wound Healing

- Hemorrheologics (e.g., pentoxifylline (Trental)
- Hormones (estrogen): topical
- Phenytoin (think gums): topical
- Prostaglandins
- Zinc
- Vitamins A and C

Medications *Improving* Wound Healing

Topical "Natural" Medications

- Aloe vera
- Curcumin
- Ginger
- Medicinal Honey
- Mucilage (in Slippery Elm)
- Witch Hazel

• Off Label Topical Drugs (in the literature)

- Calcium Channel Blockers
- Topical Regular Insulin
- Topical Nitroglycerin
- Topical Dilantin

Clinical Wake Up Call

- Polypharmacy is the norm
- Co-morbidities are common
- Drugs involved in <u>all</u> wound patients care

Case Study From Real World

- 94-year-old female admitted from home; cared for by son who is devoted to her; sits at bedside; multiple co-morbidities including dementia, poor nutrition, immobility and frailty
- Consultation for wound care team: has pressure injuries on sacrum, bilateral hips and sternum
- Also has "rash" on extremities and trunk
- Multiple medications; nothing new except recently began Aricept (donepezil)

When Drugs "Break Bad"

Drugs Can CAUSE Wounds

Cutaneous Adverse Drug Reactions

- One of most common adverse reactions
- Overall incidence rate of 2-3% in hospitalized patients
- <u>Almost any (1:1000 hospitalized patients (ljaz, 2015)) medication</u> can induce skin reactions
- Selected drug classes have rates as high as 5% (Lee & Thomson)
- Some reactions are immunological; most are *not* (thankfully)
- Categorized by predictability (pharmacological) or immune basis

Type A/Type B Categories

Type A: 85–90% of adverse drug reactions (ADEs); *predictable* from known pharmacologic properties of a drug. Examples:

- Diarrhea Antibiotics
- •Gastritis NSAIDS

•Kidney toxicity – Aminoglycosides (Kaniwa et al, 2013)

Type A/Type B Categories

Type B: 10–15% of ADEs hypersensitivity: Immunologic or other patho-mechanisms; have signs/symptoms <u>different</u> from action of drug usually <u>not</u> predictable.

Examples: Exaggerated sensitivity to known drug reactions – tinnitus from low dose aspirin (Kaniwa et al, 2013)

Immunological (Hypersensitivity) Reactions

Type I: Cased by drug/antigen specific IgE that links with mast cells and basophils – immediate release of histamine/leukotrienes get urticaria, angioedema, anaphylaxis (aspirin, penicillins)

Type II: Cytotoxic reactions based on IgG or IgM – mediated mechanisms antibody ruptures cell (blood cell dyscrasias like hemolytic anemia and thrombocytopenia)

Immunologic (Hypersensitivity) Reactions

Type III: Mediated by intravascular immune complexes. Antibodies and drug antigens in circulation. Phagocytes remove complexes and ends up in skin, kidneys, etc. (serum sickness, vasculitis)

Type IV: Mediated by T cells; cause "delayed" hypersensitivity (contact dermatitis, SJS and TENS)

Uncommon Drug Offenders (*Rarely* Cause Skin Eruptions)

Antacids	Muscle Relaxants
Antihistamines (oral)	Nitrates
Atropine	Nystatin
Benzodiazepines	Oral Contraceptives
Corticosteroids	Propanolol
Digoxin	Spironolactone
Ferrous Sulfate	Theophylline
Insulin	Thyroid Hormones
Laxatives	Vitamins
Local Anesthetics	

Type of Skin ADEs

- Exanthems
- Fixed Drug Eruptions (Allergic)
- Blistering
- Psoriasisiform
- Immune Mediated (SJS and TEN)
- Hematologic/Vasculitic

Risk Factors for Skin ADE

- History of atopy
- Viral infections (e.g., HIV, Hepatitis C)
- Female gender
- Genetic polymorphism
- Connective tissue disorders
- Solid organ cancers (Ijaz, 2015)

Exanthem Response

Blistering: Bullous Pemphigoid

Hematologic: Warfarin Necrosis

Common Drug Offenders: Exanthems

- Allopurinol
- Antimicrobials (PCN, Cephalosporins, Erythromycin, Gentamicin, Anti-TB Drugs, Nitrofurantoin, Sulfa)
- Barbiturates
- Captopril
- Carbamazepine
- Furosemide
- Gold Salts
- Lithium
- Phenothiazine
- Phenytoin
- Thiazides

Common Drug Offenders (Fixed Drug Eruption – Same Site*)

- ACE Inhibitors
- Allopurinol
- Antimicrobials (Sulfa, Tetracyclines, Cephalosporins, PCN, Clindamycin, Trimethoprim, metronidazole)
- Barbiturates
- Benzodiazepines
- Calcium Channel Blockers
- Carbamazepine
- Fluconazole
- Lamotrigine
- NSAIDs
- Paclitaxel
- Proton Pump Inhibitors (Omeprazole, Lansoprazole)
- Salicylates
- Terbinafine
 - *Reaction at same site or sites each time drug is taken

Common Drug Offenders Blistering Reactions

- ACE Inhibitors (captopril, enalapril)
- antibiotics (cephalosporins, penicillins, sulfa agents, tetracyclines, vancomycin)
- gold/sodium aurothiolamar
- lithium
- Ioop diuretics (eg, furosemide, bumetanide)
- nonsteroidal anti-inflammatory drugs (NSAIDs)
- penicillamine
- thiazide diuretics (eg, hydrochlorothiazide)

Common Drug Offenders Causing Psoriasisiform Eruptions

- ACE–I
- Beta Blockers
- Chloroquine
- Digoxin
- Gold
- Interferons
- Lithium
- NSAIDs
- Terbinafine
- Tetracyclines
- TNF-Alpha Antagonists

SJS

TENS

Common Drug Offenders (SJS/TEN)

SJS	TEN
Barbiturates*	Allopurinol
Beta-Lactams	Anti-TB Drugs
Carbamazepine*	Barbiturates*
Chloropropamide	Carbamazepine*
Co-Trimoxazole	Gold*
Gold*	Griseofulvin
H2 Antagonists	Lamotrigine*
Lamotrigine*	Leflunomide*
Leflunomide*	
Macrolides	Nitrofurantoin
NSAIDs	NSAIDs*
Phenothiazines	Penicillins
Phenytoin*	Phenytoin*
Rifampicin	Salicylates
Sulfonamides*	Sulfonamides*
Tetracyclines*	Tetracyclines*
Thiazides	

* Can cause both CIS and TEN

Common Drug Offenders (Vasculitis Reactions)

- Allopurinol
- Aspirin
- Beta-Lactam Antibiotics
- Carbamazepine
- Co-trimoxazole
- Diltiazem
- Erythromycin
- Furosemide
- Gold
- Hydralazine
- Methotrexate
- NSAIDs
- PTU
- Sulfasalazine
- Sulfonamides
- Thiazides
 - Thrombolytic Agents

Clinical Implications for Wound Professionals

- Take detailed accurate medication history
- Note use of all OTC medications especially herbals
- Note injections including vaccines or contrast media
- Note time of medication relative to onset of wound/skin problems (ADE)
- Take detailed medical history: Any history of drug sensitivity, contact dermatitis, connective tissue disease, atopy (asthma, eczema), previous wound healing delays

General Management Points SKIN ADEs

- Examine skin eruption closely and determine if drug-related
- Educate patient about avoidance of drug in future; record clearly in history
- If serious enough, Medic Alert bracelet
- Notify pertinent regulatory authorities if serious reaction (FDA FAERS (Federal Adverse Event Reporting System: www.fda.gov)

Hematologic Dermatologic ADR

- > WISN: Warfarin-induced skin necrosis
- > HIT Syndrome
- >WISN: occurs 3 to 5 days after dose of warfarin; often in patient with Protein C and Protein S deficiences
- » Red painful plaques
- Progress possibly to hemorrhagic blisters, ulcers, necrosis (Clinard et al)

Warfarin Necrosis

Warfarin Necrosis

Hematologic ADR of Skin

- > HIT Syndrome (Specifically HIT II)
 - Get loss of heparin due to Immune complex (HIT antibodies)
 - Get destruction of platelets from antibody complexes (Trautman et al, 2010)
 - Decreased platelets < 150,000
 - Get arterial and venous thrombosis
 - Necrosis of skin in **fatty** areas as abdomen, thighs
 - can also be blisters, purpura
 - Diagnosis: Use "4Ts Score" (Thrombocytopenia, timing of platelet fall, thrombosis and sequelae, other causes for thrombocytopenia) (Coutre, 2015)

HIT Skin Necrosis

Heparin-Induced Thrombocytopenia Lesions

Understanding Nature of ADEs

- Harkainen et al (2014) in a Finnish study of 463 patients looked at hospital records over 12 month time
- Total of 180 ADEs in 125 patients (27%)
- Of these 74(41%) were preventable; 95% caused temporary harm
- Most common ADE was abnormal blood potassium
- Risk was increased by duration of care and polypharmacy

Addressing Wound Healing Inhibiting Factors

- Consider impact of hidden malnutrition (Protein insufficiency) on drug metabolism (protein binding and drug toxicities); does patient have fatigue, pain, mouth ulcers?
- Consider common drugs of age groups treated (in wound care and wound clinics mostly older)
 - Rheumatoid diseases and DMARDS (methotrexate and sulfasalazine etc.)
- Consider polypharmacy and need for "deprescribing"

Addressing Other Wound Healing Inhibiting Factors

- Effects of Aging on Drug Metabolism and Excretion
 - With aging, liver function decreases by 40% so drugs can be "stored" and cause toxicity
 - Kidney function decreases with age; better to use creatinine clearance rather than creatinine level in elderly to monitor levels; affects drug excretion
 - Selected drugs with greater harm in elderly:
 - Antipsychotics (haloperidol)
 - Hypnotics (diazepam)
 - Diuretics (furosemide) (Kaufman, 2015)

Addressing Other Wound Healing Inhibitors

- Usage of other "traditional" therapies
- Need to ask if patient is consuming any herbal products (teas, liquid extracts, capsules)
- > 2) Need to ask patient is applying any herbal topical preparation to wound
- 3) Potential for herbal-drug interaction: "Natural" does not mean safe
- A) Does the patient space herbals away in time from other drugs (St. John's Wort, Cinkgo biloba, etc.)

Herbal Medicines and Wound Healing (Maver et al, 2015)

- Plant-based systems continue to play role in healthcare of 80% of world's developing countries
- Called "phytomedicines"
- Affordable and usually no to minimal side effects
- Level of evidence varies greatly

Top 10 Selling Herbals in USA (2012)

- Cranberry
- Garlic
- Saw Palmetto
- Soy
- Ginkgo Biloba
- Milk Thistle
- Black Cohosh
- Echinachea
- St. John's Wort
- Ginseng

- Flax seeds
- Wheat and Barley grass
- Turmeric
- Aloe Vera
- Blue Green Algae
- Milk Thistle
- Elderberry
- Saw Palmetto
- Echinachea
- Cranberry

Mainstream Markets

Natural/Health Markets

Practice Implications: Wound Care

- Need to identify detailed information on herbals used (dose, form, topical etc.)
- Need to identify "red-flag" medications for potential interactions (warfarin, digoxin, lithium, cyclosporine, protease inhibitors)
- Educate patient with wounds on safety, dosing, and potential toxicities of nonprescription pharmaceuticals (Ranade and Collins, 2014)

Practice Implications: Wound Care

- Reduce polypharmacy for wound patients by "de-prescribing"; interact with primary care provider
- Remember that polypharmacy is not only removing excess drugs but that polypharmacy is also going to more than one pharmacy (Gillette et al, 2015); educate patients about the risk
- Put on your ARMOR and LOOK at the wound patient

Practice Implications: ARMOR

- A: Assess
- R: Review
- M: Minimize
- O: Optimize
- R: Reassess

A: Beers criteria; Beta blockers, Pain meds; Antipsychotics

- R: D-drug interaction; Ddisease interaction; ADEs
- M: #of meds related to functional status
- O: for renal/hepatic status
- R: functional/cognitive status in one week from any changes and periodically

Mnemonic

Meaning (Haque, 2008)

Practice Implications: Wound Care

- Update oneself about alternative adjuncts to wound healing
- Repurposed approved drugs: Erythropoietin (EPO); excellent review of animal studies using exogenous EPO (Hamed et al, 2014); topical EPO accelerates wound healing
- Phyto-extracts in wound healing-excellent overview (Ghosh and Gaba, 2013) 450 plant species have wound healing properties

 Hydralazine has anti-angiogenesis effects (study done in rats and chicken models) (Zheng et al, 2016)

Summary

- Discussed multiple chronic conditions affecting wound patients
- Explored selected data for drugs that impair wound healing
- Offered implications for informed clinical practice

References

- Anderson K., Hamm, R.L. (2014). Factors that impair healing. *Journal of American College of Clinical Wound Specialists*, 4, 84–91.
- Arslantas, R., & Arslantas, M. (2015). Adverse effect of sildenafil on healing ischemic wounds: Results of an In vivo study. Ostomy Wound Management, 61(9), 32-37.
- Armstrong, D., & Meyr, A.J. (2016). Wound healing and risk factors for non-healing. *UpToDate*, Retrieved 12/1/2016 from <u>www.uptodate.com</u>
- Barnard, A.R., Regan, M., Burke, F.D., Chung, K.C., & Wilgis, E.F. (2012). Wound healing with medications for rheumatoid arthritis in hand surgery. *International Scholarly Research Network*, 2012, Article ID 251962, 5 pgs.

References

- Barrios, R.L., & Arbiser, J.L. (2011). Effectiveness of gentian violet and similar products commonly used to treat pyodermas. *Dermatology Clinics*, 29, 69–73.
- Bauer, K.A. (2016). Protein C deficiency: clinical manifestations and diagnosis. UptoDate. Retrieved January 2, 2017.
- Beitz, J. (2017). Breaking bad: Medications and wound healing. Ostomy Wound Management, 63(3), 18-35.
- Benhadou, F., Del Marmol, V. (2013). The mTor inhibitors and the skin wound healing. *EWMA Journal*, 13(1), 20–22.

- Bircher, A.J. (2017). Exanthematous (morbilliform) drug eruption. *UpToDate*, Retrieved January 2, 2017 from <u>www.uptodate.com</u>.
- Centers for Disease Control (2017). *Health: United States*, 2016. Retrieved August 25, 2017 from <u>www.cdc.gov</u>.
- Chin, K., & Cordell, B. (2013). The effect of tea tree oil (melaleuca alternifolia) on wound healing using a dressing model. *Journal of Alternative and Complementary Medicine*, 942-945.
- Choueri, T.K. Sonpavde, G. (2016). Toxicity of molecularly targeted antiangiogenic agents: Noncardiovascular effects. *UptoDate,* Retrieved December 15, 2016 from www.uptodate.com.

 Clinard, V., Smith, J. D. (2014). Drug-induced skin disorders. U.S. Pharmacist. Retrieved November 20, 2014 from www.medscape.com/viewarticle/763495_print.

- Common Side Effects, Allergies and reactions to antibiotics. *Drugs.com.* Retrieved November 20, 2014 from <u>www.drugs.com/article/antibiotic-sideeffects-allergies-</u> <u>reactions.html</u>.
- Cooper, KL. (2012). Drug reaction, skin care, skin lost. *Critical Care Nurse*, 32(4), 52–59.
- Crane, M. (2016). U.S. herbal supplement sales climb 7.5% in 2015. Nutritional Outlook, Retrieved August 8, 2017 from www.nutritionaloutlook.com
- Douglas, H.E. (2010). TGF-B in wound healing: A review. *Journal of Wound Care*, 19(8), 403-
- Dowd, S.E., Wolcott, R., Kennedy, J., Jones., C., & Cox, S.B. (2011). Molecular diagnostic and personalized medicine in wound care: Assessment of outcomes. *Journal of Wound Care*, 20(5), 232-239.

- Gaucher, S. Nicolas, C., Piveteau. O. Philippe, H.J. Blanche, P. (2017). Sarcoidosis and wound healing after cellulitis of the lower limb: Is methotrexate responsible for skin graft failure? *Wounds*, 29(8), 229–230.
- Gillette, C., Prunty, L, Wolcott, J Brodel–Zaugg, K. (2015). A new lexicon for polypharmacy: Implications for research, practice, and education. *Research in Social and Administrative Pharmacy*, 11(3), 468–471.
- Ghosh, P.K., & Gaba, A. (2013). Phyto-extracts in wound healing. *Journal of Pharmacy and Pharmaceutical Science*, 16(5), 760-820.
- Guo, S. & DiPietro, L. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 218–229.

- Greener, M. (2009). NSAIDs applied to the skin: a very topical subject. *Nurse Prescribing*, 7(7), 294–299.
- Hamed, S., Bennett, C.L., Demiot, C., Vulmann, Y., Teot, L., Desmouliere, A. (2014). Erythropoietin, a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus. *Wound Repair and Regeneration*, 22, 23–33.
- Harding, K. (2014). Innovation and wound healing. Proceedings of the international surgical wound forum. *Journal of Wound Care*, 24(4), 7–13.
- Harding, K. (2014). Innovation and wound healing. Proceedings of the international surgical wound forum. *Journal of Wound Care*, 24(4), 7–13.
- Haque, R. (2009). ARMOR: A tool to evaluate polypharmacy in elderly persons. Annals of Long-Term Care, June, 26-30.
- Harkainen, M., Kervinen, M. Ahonen, J. Voutilainen, A. Turonen, H., & Vehvilaninen–Julkiunen, K. (2014). Patient–specific risk factors of adverse drug events in adult inpatinets–Evidence detected using the Global Trigger Tool method. *Journal of Clinical Nursing*, 24, 582–591.
- Harris, C.L., & Fraser, C. (2004). Malnutrition in the institutionalized elderly: The effects on wound healing. *Ostomy Wound Management*, 50(10), 54-63.
- Hashemi, S.A., Madani, S.A., & Abediankenari, S. (2015). The review on properties of aloe vera in healing of cutaneous wounds. *BioMed Research International*, 2015, Article ID 714216, 6 pages.

- Hollister, C., & Li, V.W. (2007). Using angiogenesis in chronic wound care with becaplermin and oxidized regenerated cellulose/collagen. *Nursing Clinics of North America*, 42, 457–465.
- Ijaz, N. (2015). Cutaneous drug rashes. British Journal of Hospital Medicine, 11(11), C166–169.
- Jeffcoach, D.R., Sams, V.G., Lawson, C.M., Enderson, B.L., Smith, S.T., Kline, H., Barlow, P.B., Wylie, D.R., Krumenacker, L.A., McMillen, J.C., Pyda, J., Daley, B.J., & University of Tennessee Medical Center, Department of Surgery (2014). Nonsterioidal anti-inflammatory drugs' impact on nonunion and infection rates in long-bone fractures. *Journal of Trauma Acute Care Surgery*, 76, 779–783.
- Kadota, Y., Nishida, K., Hashizume, K., Nasu, Y., Nakahara, R., Kanazawa, T., Ozawa, M., Harapa, R., Machida, T., Ozaki, T. (2016). Risk factors for surgical site infections and delayed wound healing after orthopedic surgery in rheumatoid arthritis patients. *Modern Rheumatology*, 26(1), 68–74.
- Kaniwa, N. & Saito, Y. (2013). Pharmacogenomics of severe cutaneous adverse reactions and drug-induced liver injury. *Journal of Human Genetics*, 58, 317-326.
- Karukonda, SRK, Flynn, TC, Boh, EE, McBurney, EI, Russo, G & Millikan, LE. (2000). The effects of drugs on wound healing. Part I. *International Journal of Dermatology*, 39(4), 250–257.
- Karukonda, SRK, Flynn, TC, Boh, EE, McBurney, EI, Russo, G & Millikan, LE. (2000). The effects of drugs on wound healing. Part II. *International Journal of Dermatology*, 39(5), 321–333.

- Kaufman, G. (2015). Multiple medicines: The issues surrounding polypharmacy. NRC, 17(4), 198–203.
- Khalil, H., Cullen, M., Chambers, H., Carroll, M., Walker, J., (2015). Elements affecting wound healing time: An evidence– based analysis. *Wound Repair and Regeneration*, 23, 550– 556.
- Krischak, G.D., Augat, P., Claes, L., Kinzl, L., & Beck, A. (2007). The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats. *Journal of Wound Care*, 16(2), 76–8.
- Lee, A. & Thomson, J. (2006). Drug-induced skin reactions. Adverse Drug Reactions, 2, 125–156.
- Lindstrom, A., Ooyen, C., Lynch, M. E., Blumenthal, M. (2013). Herb supplement sales increase from 5.5% in 2012; Herbal supplements sales rise for the 9th consecutive year; turmeric sales sump 40% in natural channel. *Herbal Gram*, 99, 60–65.

- Maggiore, R. J., Dale, W., Gross, C. P., Feng, T., Ten, W.P., Mohire, S. G., Owusu, C., Klepin, H.D., Lichtman, S. M., Gajra, A., Ramani, R., Katheria, V., Zavala, L., Hurria, A., and Cancer and Aging Research Group (2014). Polypharmacy and potentially inappropriate medication use in older adults with cancer undergoing chemotherapy: Effect on chemotherapy-related toxicity and hospitalization during treatment. JAGS, 62, 1505–1512.
- Marrs, J., & Zubal, B.A. (2009). Oncology nursing in a new era: Optimizing treatment with bevacizumab. *Clinical Journal of Oncology Nursing*, 13(5), 564-572.
- Maver, T., Maver, V., Kleinschek, K., Smrke, D., & Kreft, S. (2015). A review of herbal medicines in wound healing. *International Journal of Dermatology*, 54, 740–751.
- McIntyre, K. (2015). An oncology nurses/ guide to new targeted agents for metastatic colorectal cancer. *Clinical Journal of Oncology Nursing*, 19(5), S71-S79.
- Nedorost, S. T. & Stevens, S. R. (2011). Diagnosis and treatment of allergic skin disorders in the elderly. *Drugs Aging*, 18(11), 827-835.
- Nijhuis, W., Houwing, R., Van der Zwet, W., Jansman, F. (2012). A randomized trial of honey barrier cream versus zinc oxide ointment. *British Journal of Nursing*, 21(20), S10-S13.

- Non-steroidal anti-inflammatory drugs and their skin side effects. (2014). *Dermnet NZ*, Retrieved November 20, 2014 from <u>www.dermnetnz.org/reactions/nsaids.html</u>.
- Peart, J. (2015). Influence of psychosocial factors on coping and living with a venous leg ulcer. *Community Wound Care*, June, 521-527.
- Pichler, W. (2003). Delayed drug hypersensitivity reactions. Archives of Internal Medicine, 139, 683–693.
- Pichler, W. (2016). Drug allergy: Classification and clinical features. UpToDate, Retrieved December 15, 2016 from www.uptodate.com.

- Poetker, D. M. & Reh, D. (2010). A comprehensive review of the adverse effects of systemic corticosteroids. *Otolaryngology Clinics of North America*, 43, 753–768.
- Price, P.E. (2008). Education, psychology and compliance. *Diabetes/Metabolism Research and Reviews*, 24(Suppl 1), S101– S105.
- Ranade, D. & Collins, N. (2014). Nutrition 411: An introduction to herbs for wound healing professionals. *Ostomy Wound Management*, 60(6), 10 pages. Retrieved 2/5/2016 from <u>www.o-wm.com</u>.
- Rochon, P. A. (2016). Drug prescribing for older adults. *UpToDate*, Retrieved December 15, 2016 from <u>www.uptodate.com</u>.
- Ryan T. (2003). Use of herbal medicines in wound healing. International Journal of Lower Extremity Wounds, 2(1), 22-24.
- Samel, A. D. & Chu, C. Y. (2016). Drug eruptions. *UpToDate*, Retrieved December 15, 2016 from <u>www.uptodate.com</u>

- Scott, I.A., Hilmer, S.N., Reeve, E., Potter, K., LeCouteur, D., Rigby, D., Gnjidic, D., Delmar, C.B., Roughead, E.E., Page, A., Jansen, J., & Martin, J. (2015). Reducing inappropriate polypharmacy the process of deprescribing. *JAMA Internal Medicine*, 175(5), 27–834.
- Shirin, J. (2015).Polypharmacy, the elderly, and deprescribing. Consultant Pharmacist, 30(9), 527-532.
- Smith, R. (2008). The effects of medications in wound healing. *Podiatry Management,* August, 195–202
- Sowicz, T. J. (2010). Atopic dermatitis: An evaluation of two clinical guidelines. *Dermatology Nursing*, 22(5), 9–11.
- Teng, M., Huang, Y., & Zhang, H. (2014). Application of stem cells in wound healing: An update. *Wound Repair and Regeneration*, 22, 151–160.
- Treadwell, T. (2013). Editorial Message: Corticosteroids and wound healing. *Wounds*, 25(10), 2 pages. Retrieved 12/28/2015 from www.wounds.research.com

- Vodovotz, Y. (2010). Translational systems biology of inflammation and healing. *Wound Repair and Regeneration*, 18, 3-7.
- Wallace, A. & Taylor, C. (2011). Recognizing how chemotherapy side effects can affect stoma care. *Cancer Nursing Practice*, 10(2), 20–25.
- Wang, A., Armstrong, E.J., Armstrong, A.W. (2013). Corticosteroids and wound healing: Clinical considerations in the perioperative period. *American Journal of Surgery, 206(3)* 410–417.
- Ward, K. E., Archambault, R., Mersfelder, T. L. (2010). Severe adverse skin reactions to nonsteroidal anti-inflammatory drugs: A review of the literature. *American Journal of Health-System Pharmacy*, 67, 206–213.

- Wigston, C., Hassan, S., Turvey, S., Bosanquet, D., Richards, A., Holloway, S., & Harding, K. (2013). Impact of medications and lifestyle factors on wound healing: A pilot study. *Wounds UK*, 9(1), 22–28.
- Zhang, Q., Lin, Z., Lin, X., Tang, L., Luo, H., Li, H., Zhang, Y., & Luo, W. (2016). In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. *European Journal of Pharmacology*, 779, 138–146.
- Zhu, J. & Weingart, S. N. (2016). Prevention of adverse drug events in hospitals. *UpToDate*, Retrieved December 15, 2016 from <u>www.uptodate.com</u>.
- N.B. See additional references and information in Beitz (2017)