# **Recent Advances In Critical Care Nutrition**

Todd W. Rice, MD, MSc Associate Professor of Medicine Vanderbilt University

New Jersey Hospital Association Critical Care Symposium 2017 October 24, 2017





- 1. Discuss newer data on PN vs EN in critically ill patients
- 2. Understand the data supporting the use of trophic EN rates in patients with respiratory failure
- 3. Describe data about the use of Indirect Calorimetry in Estimating Target kcal and protein

# **Conflict of Interest Disclosures**

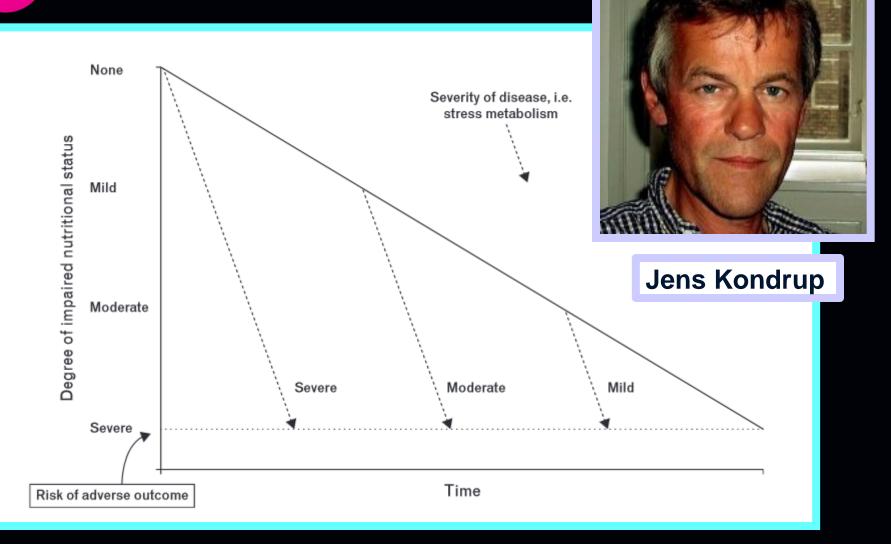
• Member of the ASPEN/SCCM Guidelines TaskForce and Author on the Guidelines



• 55 y.o. male COPD with baseline PaCO2 55, Type 2 DM, HTN, atrial fibrillation (on coumadin) presents with pneumonia and septic shock. He has new renal failure with creatinine 5.0. Intubated in ED, started on norepinephrine drip, and admitted to MICU. On 70% FiO2, PEEP 12 and his CXR looks like ARDS.

# **Nutrition Questions**

- Should we feed him? How would we assess risk?
- How should we feed him?
   Enteral vs. Parenteral; Gastric vs. Post-pyloric
- When should we start feeding him? – Right away vs. few days vs. out of shock
- What should we feed him?
  - TF "du jour" vs. special formula
- How much should we feed him (goals)?
  Trophic vs full-calorie
- What safety measures should we employ? – Gastric residual volume level; GI intolerances


## **Nutrition Questions**

- Should we feed him? How would we assess risk?
- How should we feed him? – Enteral vs. Parenteral; Gastric vs. Post-pyloric
- When should we start feeding him? – Right away vs. few days vs. out of shock
- What should we feed him?
  - TF "du jour" vs. special formula
- How much should we feed him (goals)?
  Trophic vs full-calorie; Directed by Indirect Calorimetry
- What safety measures should we employ? – Gastric residual volume level; GI intolerances



- Malnutrition in respiratory failure is associated with worse outcomes
  - Many assume that feeding such patients (even if they are not malnourished) must improve outcomes
- Consensus statements endorse EN over PN in acute respiratory failure
- Strong beliefs about timing, delivery, and composition of EN exist (with emerging data)

#### **NEW** Concept of Nutritional Risk



**Components:** Impaired nutrition status and disease severity

J Kondrup (Curr Opin Clin Nutr Metab Care 2014;17:177)

## **Nutrition Assessment**

- Does Nutrition Risk Assessment identify patients likely to benefit from nutrition therapy?
  - Very little data on outcomes of nutrition assessment
  - Few studies use formal nutrition assessment as enrollment criteria
    - Recent weight loss
    - Formal assessment scores
  - Malnutrition in these patients is hard to define
  - Baseline nutrition status versus nutrition risk
  - Expert opinion still behind identifying highest risk patients and aggressively providing them with nutritional support

## **Nutrition Assessment - History**

#### Many assessment tools

- Recent weight loss
- Traditional Serum Protein Markers
  - Albumin, prealbumin, transferrin, retinol binding protein
  - All reflect acute phase response not reliable
- Anthropomorphic measures
  - Skin-fold thickness
  - Waist / hip / chest circumference
- Many screening and assessment tools
  - Mini Nutritional Assessment (MNA)
  - Malnutrition Universal Screening Tool (MUST)
  - Short Nutritional Assessment Questionnaire (SNAQ)
  - Malnutrition Screening Tool (MST)
  - Subjective Global Assessment (SGA)

### **Nutrition Assessment – Recent Advances**

- New assessment tools incorporate disease severity
  - Nutrition Risk Score (NRS) 2002<sup>1</sup>
  - Nutric Score<sup>2</sup>
  - High nutritional risk defined as NRS  $\geq$  5 or Nutric  $\geq$  6 \* <sup>2,3</sup>

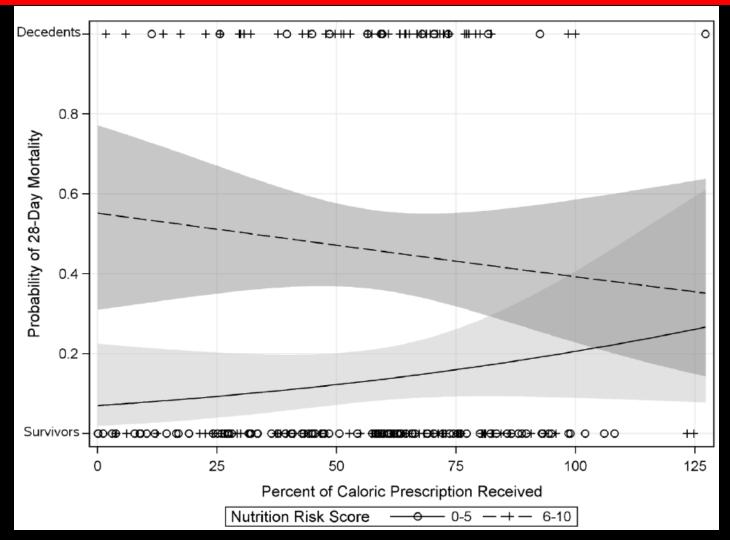
#### Use of muscle mass

- Paraspinous muscles on CT<sup>4</sup>
- Ultrasound to determine muscle mass <sup>5</sup>

- 1. Kondrup J, et al. *Clin Nutr*. 2003;22:321-336.
- 3. Jie B, et al. Nutrition. 2012;28(10):1022-1027.

5. Mourtzakis M, et al. Curr Opin Clin Nutr Metab Care. 2014;17:389-395.

2. Heyland DK, et al. *Crit Care.* 2011; 15:R268.


4. Puthucheary ZA, et al. JAMA. 2013;310:1591-1600.

# Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool

| Table 4 Proposed nutrition scoring s    | 01      | verall<br>= 598) | Random split A $(n = 299)$ |        | Random split B<br>(n = 299) |        |
|-----------------------------------------|---------|------------------|----------------------------|--------|-----------------------------|--------|
| Variables in NUTRIC Score               | Range   | Points           | Range                      | Points | Range                       | Points |
| Age                                     | < 50    | 0                | < 50                       | 0      | < 60                        | 0      |
|                                         | 50-< 75 | 1                | 50-< 75                    | 1      | 60-< 75                     | 1      |
|                                         | ≥75     | 2                | 75+                        | 2      | 75+                         | 2      |
| APACHE II                               | < 15    | 0                | < 15                       | 0      | < 15                        | 0      |
|                                         | 15-< 20 | 1                | 15-< 19                    | 1      | 15-< 28                     | 2      |
|                                         | 20-28   | 2                | 19-28                      | 2      | 28+                         | 3      |
|                                         | ≥28     | 3                | 28+                        | 3      |                             |        |
| SOFA                                    | < 6     | 0                | < 6                        | 0      | < 6                         | 0      |
|                                         | 6-< 10  | 1                | 6-< 10                     | 1      | 6-< 10                      | 1      |
|                                         | ≥10     | 2                | ≥10                        | 2      | ≥10                         | 2      |
| # Co-morbidities                        | 0-1     | 0                | 0, 1                       | 0      |                             | 0      |
|                                         | 2+      | 1                | 2, 3                       | 1      | 1+                          | 1      |
|                                         |         |                  | 4+                         | 2      |                             |        |
| Days from hospital to ICU admit         | 0-< 1   | 0                | 0<-1hr                     | 0      | ALL                         | 0      |
|                                         | 1+      | 1                | 1hr                        | 1      |                             |        |
|                                         |         |                  |                            |        | 220+                        | 1      |
| IL6                                     | 0-< 400 | 0                | 0-350                      | 0      | 0-< 450                     | 0      |
|                                         | 400+    | 1                | 350+                       | 1      | 450+                        | 1      |
| NUTRIC score discriminative performance | In s    | ample            | Out of sample              |        | Out of sample               |        |
| AUC                                     | C       | ).783            | 0.771                      |        | 0.770                       |        |
| Gen R-Squared                           | C       | .169             | 0.163                      |        | 0.157                       |        |
| Gen Max-rescaled R-Squared              | C       | .256             | 0.2                        | 46     | 0                           | .237   |

#### Heyland DK, et al. Crit Care. 2011; 15:R268.

Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool



Heyland DK, et al. Crit Care. 2011; 15:R268.

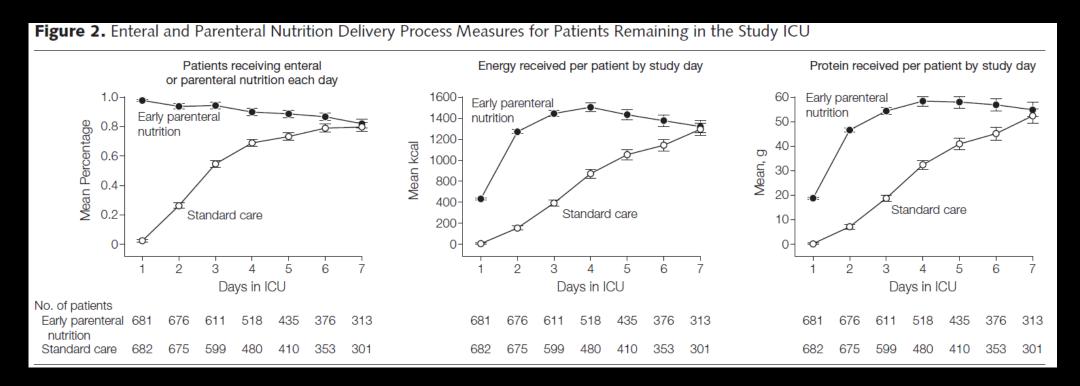
# How to Feed the Critically III Patient:

# EN vs PN

# EN vs. PN

## Is Enteral still better than Parenteral?

- Improved TPN solutions
- Tight glycemic control
- Improved Central Line Care


# **Recent Evidence**

- Gordon S. Doig, PhD
- Fiona Simpson, MND
- Elizabeth A. Sweetman, MHM
- Simon R. Finfer, FCICM
- D. Jamie Cooper, FCICM
- Philippa T. Heighes, MN
- Andrew R. Davies, FCICM
- Michael O'Leary, FCICM
- Tom Solano, FCICM
- Sandra Peake, FCICM
- for the Early PN Investigators of the ANZICS Clinical Trials Group

## ICUs from 31 Austr / NZ Hosp

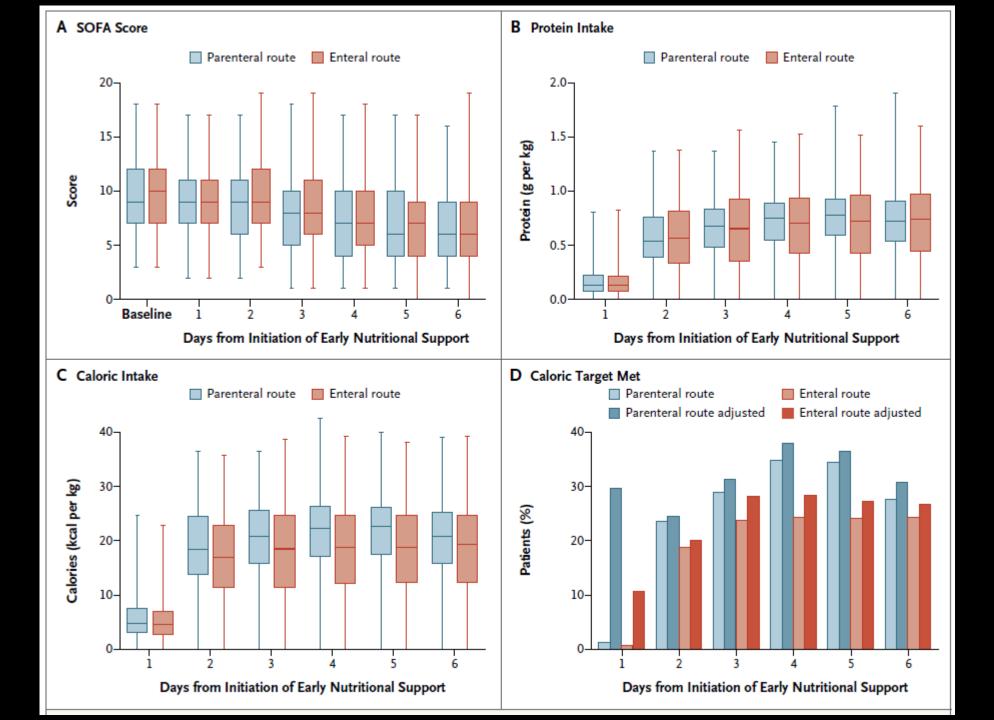
- 1372 critically ill adults in first 24 hours of ICU admission
- Relative contraindication to early EN & expected ICU > 2 d
- 45% emerg, 20% elective surg
- 60% with GI; 20% CV dx

- Randomized to SOC vs PN on day 1 targeting goal calories by day 3
- In PN group, reminder for EN start on day 3
- In SOC group, no protocol; team controlled
- Primary Endpoint: 60 day mortality
- Other Endpoints: MV; LOS; infections



| Table 2. Mortality, Quality of Life, and Length of Stay       |                                         |                                    |                                |                        |         |  |  |  |
|---------------------------------------------------------------|-----------------------------------------|------------------------------------|--------------------------------|------------------------|---------|--|--|--|
|                                                               | Standard Care<br>(n = 680) <sup>a</sup> | Early PN<br>(n = 678) <sup>a</sup> | Risk Difference, %<br>(95% Cl) | Odds Ratio<br>(95% Cl) | P Value |  |  |  |
| Deaths before study day 60, No. (%)                           | 155 (22.8)                              | 146 (21.5)                         | -1.26 (-6.6 to 4.1)            | 0.93 (0.71 to 1.21)    | .60     |  |  |  |
| Covariate-adjusted deaths before study day 60 <sup>b</sup>    |                                         |                                    | 0.04 (-4.2 to 4.3)             | 1.00 (0.76 to 1.31)    | >.99    |  |  |  |
| Quality of life and physical function, mean (SD) <sup>c</sup> | (n = 525)                               | (n = 532)                          | Difference                     | e (95% CI)             |         |  |  |  |
| RAND-36 general health status <sup>d</sup>                    | 45.5 (26.8) (n = 516)                   | 49.8 (27.6) (n = 525)              | 4.3 (0.95                      | to 7.58)               | .01     |  |  |  |
| ECOG performance status <sup>e</sup>                          | 1.53 (1.1) (n = 516)                    | 1.51 (1.1) (n = 525)               | -0.02 (-0.1                    | 5 to 0.11)             | .70     |  |  |  |
| RAND-36 physical function <sup>f</sup>                        | 40.7 (29.6) (n = 513)                   | 42.5 (30.8) (n = 524)              | 1.8 (-1.8                      | 5 to 5.52)             | .33     |  |  |  |
| Discharge status and length of stay                           | (n = 682)                               | (n = 681)                          | Difference                     | e (95% CI)             |         |  |  |  |
| ICU stay, mean (95% Cl), d                                    | 9.3 (8.9 to 9.7)                        | 8.6 (8.2 to 9.0)                   | -0.75 (-1.                     | 47 to 0.04)            | .06     |  |  |  |
| Deaths before ICU discharge, No. (%)                          | 100 (14.66)                             | 81 (11.89)                         | -2.77% (-8.0                   | 08% to 2.52%)          | .15     |  |  |  |
| Hospital stay, mean (95% Cl), d                               | 24.7 (23.7 to 25.8)                     | 25.4 (24.4 to 26.6)                | 0.7 (-1.4                      | 4 to 3.1)              | .50     |  |  |  |
| Deaths before hospital discharge, No. (%)                     | 151 (22.1)                              | 140 (20.6)                         | -1.58% (-6.9                   | 91% to 3.69%)          | .51     |  |  |  |

**Table 3.** Clinically Significant Organ Failure and Concomitant Interventions, Adjusted for Time at Risk (ICU Stay)<sup>a</sup>


|                                             | Mean (95% CI), Days per 1 | 0 Patient $	imes$ ICU Days | Mean Difference                                   |                                |  |
|---------------------------------------------|---------------------------|----------------------------|---------------------------------------------------|--------------------------------|--|
|                                             | Standard Care (n = 682)   | Early PN (n = 681)         | (95% CI), Days per 10<br>Patient $	imes$ ICU Days | <i>P</i><br>Value <sup>b</sup> |  |
| Organ system failures <sup>c</sup>          |                           |                            |                                                   |                                |  |
| Renal                                       | 1.66 (1.51 to 1.82)       | 1.65 (1.51 to 1.81)        | -0.01 (-0.28 to 0.33)                             | .98                            |  |
| Pulmonary                                   | 8.51 (8.34 to 8.69)       | 8.54 (8.37 to 8.71)        | 0.03 (-0.31 to 0.37)                              | .88                            |  |
| Hepatic                                     | 1.14 (1.09 to 1.20)       | 1.08 (1.03 to 1.14)        | -0.06 (-0.16 to 0.06)                             | .15                            |  |
| Coagulation                                 | 2.23 (2.09 to 2.38)       | 1.89 (1.78 to 2.02)        | -0.34 (-0.57 to -0.08)                            | .01                            |  |
| Cardiovascular                              | 1.16 (1.05 to 1.27)       | 0.99 (0.89 to 1.09)        | -0.17 (-0.34 to 0.04)                             | .11                            |  |
| MODs                                        | 4.04 (3.85 to 4.25)       | 3.93 (3.74 to 4.13)        | -0.11 (-0.48 to 0.29)                             | .59                            |  |
| No. of organ failures <sup>d</sup>          | 1.47 (1.44 to 1.51)       | 1.42 (1.39 to 1.46)        | -0.05 (-0.12 to 0.02)                             | .12                            |  |
| Concomitant therapies and tertiary outcomes |                           |                            |                                                   |                                |  |
| Renal replacement therapy                   | 0.99 (0.82 to 1.81)       | 0.80 (0.67 to 0.96)        | -0.19 (-0.42 to 0.16)                             | .25                            |  |
| Invasive mechanical ventilation             | 7.73 (7.55 to 7.92)       | 7.26 (7.09 to 7.44)        | -0.47 (-0.82 to -0.11)                            | .01                            |  |
| Pressure ulcer treatment <sup>e</sup>       | 0.87 (0.74 to 1.02)       | 0.78 (0.67 to 0.92)        | -0.09 (-0.30 to 0.22)                             | .54                            |  |
| Low serum albumin (<2.5 g/dL)               | 5.47 (5.28 to 5.67)       | 5.76 (5.56 to 5.97)        | 0.29 (-0.10 to 0.71)                              | .15                            |  |
| Systemic antibiotic use                     | 7.95 (7.78 to 8.12)       | 8.05 (7.88 to 8.22)        | 0.10 (-0.23 to 0.45)                              | .55                            |  |
| Witnessed aspiration <sup>f</sup>           | 1.59 (0.98 to 2.54)       | 1.96 (1.21 to 3.13)        | 0.37 (-0.80 to 3.45)                              | .66                            |  |
| With new pulmonary infiltrates <sup>f</sup> | 0.48 (0.20 to 1.15)       | 0.71 (0.30 to 1.72)        | 0.23 (-0.36 to 0.37)                              | .65                            |  |

Trial of the Route of Early Nutritional Support in Critically Ill Adults

- 2400 pts in UK ICUs; mixed med-surg
- Randomized to EN vs PN started w/in 36 hrs
- Continued randomized treatment for 5 days
- Primary outcome: All-cause 30-d mortality

- Age: 63; 14% surgical
- APACHE II: 19.6; SOFA: 9.5; 83% ventilated

Harvey SE, et al. N Engl J Med. 2014;371(18):1673-84.



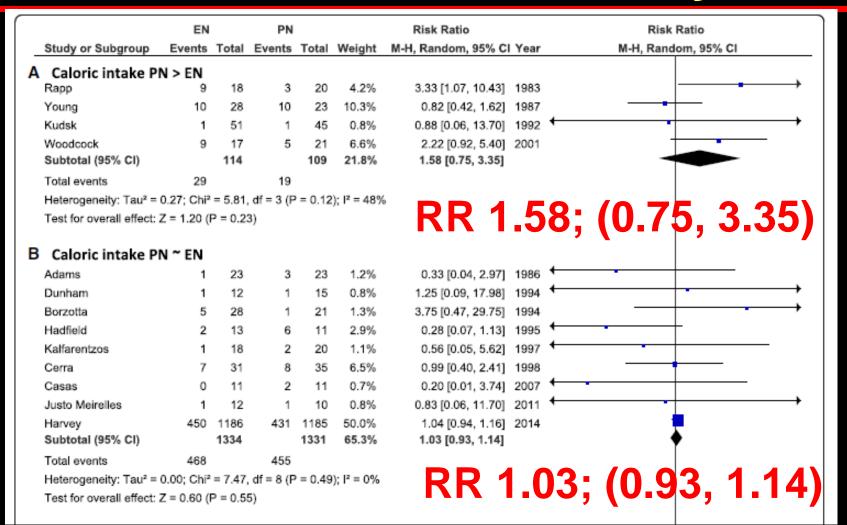
#### Trial of the Route of Early Nutritional Support in Critically Ill Adults

| Table 3. Primary and Secondary Outcom                                      | es.*                           |                               |                                                   |                           |         |
|----------------------------------------------------------------------------|--------------------------------|-------------------------------|---------------------------------------------------|---------------------------|---------|
| Outcome                                                                    | Parenteral Group<br>(N = 1191) | Enteral Group<br>(N=1197)     | Absolute Difference<br>between Groups<br>(95% CI) | Relative Risk<br>(95% CI) | P Value |
| Primary outcome: death within 30 days<br>— no./total no. (%)               | 393/1188 (33.1)                | 409/1195 <mark>(</mark> 34.2) | 1.15 (-2.65 to 4.94)†                             | 0.97 (0.86 to 1.08)‡      | 0.57∫   |
| Secondary outcomes                                                         |                                |                               |                                                   |                           |         |
| No. of days alive and free of<br>specified organ support<br>up to 30 days¶ |                                |                               |                                                   |                           |         |
| Free of advanced respiratory<br>support                                    | 14.3±12.1                      | 14.3±12.2                     | 0.04 (-0.94 to 1.01)                              |                           | 0.94    |
| Free of advanced cardiovascular<br>support                                 | 18.9±13.5                      | 18.5±13.6                     | 0.41 (-0.63 to 1.53)                              |                           | 0.44    |
| Free of renal support                                                      | 19.1±13.9                      | 18.8±14.0                     | 0.26 (-0.85 to 1.47)                              |                           | 0.66    |
| Free of neurologic support                                                 | 19.2±13.8                      | 18.9±14.0                     | 0.34 (-0.81 to 1.36)                              |                           | 0.57    |
| Free of gastrointestinal support                                           | 13.0±11.7                      | 13.2±11.8                     | -0.12 (-1.05 to 0.80)                             |                           | 0.81    |
| No. of treated infectious complica-<br>tions per patient∥                  | 0.22±0.60                      | 0.21±0.56                     | 0.01 (-0.04 to 0.06)                              |                           | 0.72    |

#### Harvey SE, et al. *N Engl J Med.* 2014;371(18):1673-84.

### Trial of the Route of Early Nutritional Support in Critically Ill Adults

| No. of treated infectious tions per patient |                        | 50 0.21±0.56         | 0.01 (-0.04 to 0.06)      | 0.72    |
|---------------------------------------------|------------------------|----------------------|---------------------------|---------|
| Noninfectious complica<br>no./total no. (%) |                        |                      |                           |         |
| Episodes of hypogly                         | cemia 44/1191 (3       | 3.7)** 74/1197 (6.2) | †† 2.49 (0.75 to 4.22)†   | 0.006∫  |
| Elevated liver enzym                        | nes 212/1191 (1        | 17.8) 179/1197 (15.0 | O) −2.85 (−5.81 to 0.12)† | 0.07§   |
| Nausea requiring tre                        | eatment 44/1191 (3     | 3.7) 53/1197 (4.4)   | 0.73 (-0.85 to 2.32)†     | 0.41∫   |
| Abdominal distentio                         | on 78/1191 (6          | 5.5) 99/1197 (8.3)   | 1.72 (-0.38 to 3.82)†     | 0.12∬   |
| Vomiting                                    | 100/1191 (8            | 3.4) 194/1197 (16.2  | 2) 7.81 (5.20 to 10.43)†  | <0.001∫ |
| New or substantially<br>pressure ulcers     | y worsened 181/1190 (1 | 15.2) 179/1195 (15.0 | 0) -0.23 (-3.10 to 2.64)† | 0.91§   |
| Median no. of days in th<br>(IQR)‡‡         | ne ICU 8.1 (4.0–1      | 5.8) 7.3 (3.9–14.3   | )                         | 0.15    |
| Median no. of days in a<br>hospital (IQR)∭  | cute care 17 (8–34)    | 16 (8–33)            |                           | 0.32    |


#### Harvey SE, et al. N Engl J Med. 2014;371(18):1673-84.

# **Doig and Calories: Summary**

- TPN did not improve 60-d mortality in critically ill patients with contraindication to early EN<sup>2</sup>
- Early TPN in this group may have reduced time on ventilator slightly (? 1 day / 20 ICU days)
- But no difference in LOS, infections
- Initial TPN for 5 days had similar outcomes (and delivery) to EN
- TPN had less hypoglycemia and vomiting

Doig, et al. JAMA. 2013; 309(20):2130-8.
 Harvey SE, et al. N Engl J Med. 2014;371(18):1673-84.

## EN vs. PN Meta-analysis: ICU Patients - Mortality



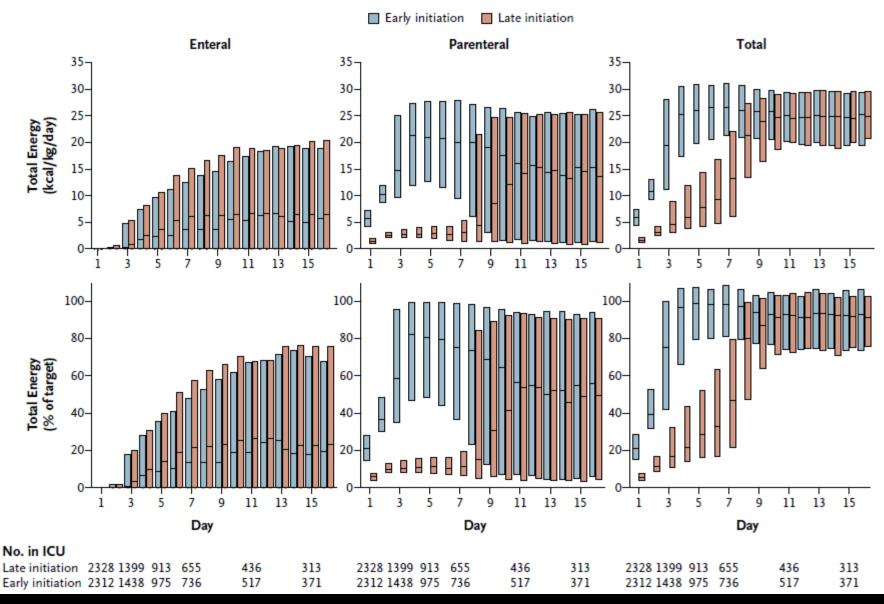
Elke G, et al. *Crit Care*. 2016;20:117.

## EN vs. PN Meta-analysis: ICU Infectious Complications

|                                     | EN                     |           | PN          |          |                        | Risk Ratio               | Risk Ratio          |
|-------------------------------------|------------------------|-----------|-------------|----------|------------------------|--------------------------|---------------------|
| Study or Subgroup                   | Events                 | Total     | Events      | Total    | Weight                 | M-H, Random, 95% Cl Year | M-H, Random, 95% Cl |
| Caloric intake P                    | N > EN                 |           |             |          |                        |                          |                     |
| Young                               | 5                      | 28        | 4           | 23       | 5.0%                   | 1.03 [0.31, 3.39] 1987   |                     |
| Peterson                            | 2                      | 21        | 8           | 25       | 3.7%                   | 0.30 [0.07, 1.25] 1988 🕇 |                     |
| Moore                               | 5                      | 29        | 11          | 30       | 7.4%                   | 0.47 [0.19, 1.19] 1989   |                     |
| Kudsk                               | 9                      | 51        | 18          | 45       | 10.8%                  | 0.44 [0.22, 0.88] 1992   |                     |
| Woodcock                            | 6                      | 16        | 11          | 21       | 9.8%                   | 0.72 [0.34, 1.52] 2001   |                     |
| Subtotal (95% CI)                   |                        | 145       |             | 144      | 36.8%                  | 0.55 [0.37, 0.82]        | ◆                   |
| Total events                        | 27                     |           | 52          |          |                        |                          |                     |
| Heterogeneity: Tau <sup>2</sup> = ( | 0.00; Chi <sup>2</sup> | = 2.75    | , df = 4 (P | P = 0.60 | ); l <sup>2</sup> = 0% |                          |                     |
| Test for overall effect: 2          | Z = 2.95 (I            | P = 0.0   | 03)         |          |                        | KK 0.55                  | ; (0.37, 0.82)      |
|                                     |                        |           |             |          |                        |                          |                     |
| Caloric intake Pl                   | N ~ EN                 |           |             |          |                        |                          |                     |
| Adams                               | 15                     | 23        | 17          | 23       | 18.2%                  | 0.88 [0.60, 1.30] 1986   |                     |
| Kalfarentzos                        | 5                      | 18        | 10          | 20       | 8.2%                   | 0.56 [0.23, 1.32] 1997   |                     |
| Casas                               | 1                      | 11        | 3           | 11       | 1.9%                   | 0.33 [0.04, 2.73] 2007 4 |                     |
| Justo Meirelles                     | 2                      | 12        | 4           | 10       | 3.5%                   | 0.42 [0.10, 1.82] 2011 4 |                     |
| Harvey                              | 194                    | 1197      | 194         | 1191     | 23.8%                  | 0.99 [0.83, 1.19] 2014   | +                   |
| Subtotal (95% CI)                   |                        | 1261      |             | 1255     | 55.5%                  | 0.94 [0.80, 1.10]        | ◆                   |
| Total events                        | 217                    |           | 228         |          |                        |                          |                     |
|                                     | 0.00.01.2              | - 4 00    | df = A/E    | a = 0.40 | 0.12 - 0.97            |                          | ; (0.80, 1.10)      |
| Heterogeneity: Tau <sup>2</sup> = ( | 0.00; Cni <sup>2</sup> | ° = 4.02, | , ar = 4 (r | - = 0.40 | $0; 1^{-} = 0.76$      |                          |                     |

Elke G, et al. Crit Care. 2016;20:117.

# **Supplementing EN with PN**


- Using parenteral nutrition to supplement enteral nutrition to increase caloric delivery
- Slowly taper off PN as tolerance of EN increases
- Society Guidelines differ:
  - ESPEN start suppl PN w/in 2 days 1
  - Canadian / ASPEN start EN ASAP but wait to start suppl PN <sup>2,3</sup>
    - 1. Singer P, et al. Clin Nutr. 2009;28:387-400
    - 2. Heyland DK, et al. JPEN. 2003;27:355-73.
    - 3. Taylor BE, et al. *Crit Care Med.* 2016;44:390-438.

#### ORIGINAL ARTICLE

#### Early versus Late Parenteral Nutrition in Critically Ill Adults

Michael P. Casaer, M.D., Dieter Mesotten, M.D., Ph.D., Greet Hermans, M.D., Ph.D., Pieter J. Wouters, R.N., M.Sc., Miet Schetz, M.D., Ph.D., Geert Meyfroidt, M.D., Ph.D., Sophie Van Cromphaut, M.D., Ph.D., Catherine Ingels, M.D., Philippe Meersseman, M.D., Jan Muller, M.D., Dirk Vlasselaers, M.D., Ph.D., Yves Debaveye, M.D., Ph.D., Lars Desmet, M.D., Jasperina Dubois, M.D., Aime Van Assche, M.D., Simon Vanderheyden, B.Sc., Alexander Wilmer, M.D., Ph.D., and Greet Van den Berghe, M.D., Ph.D.\*

# **EPaNIC: Early vs. Late TPN**



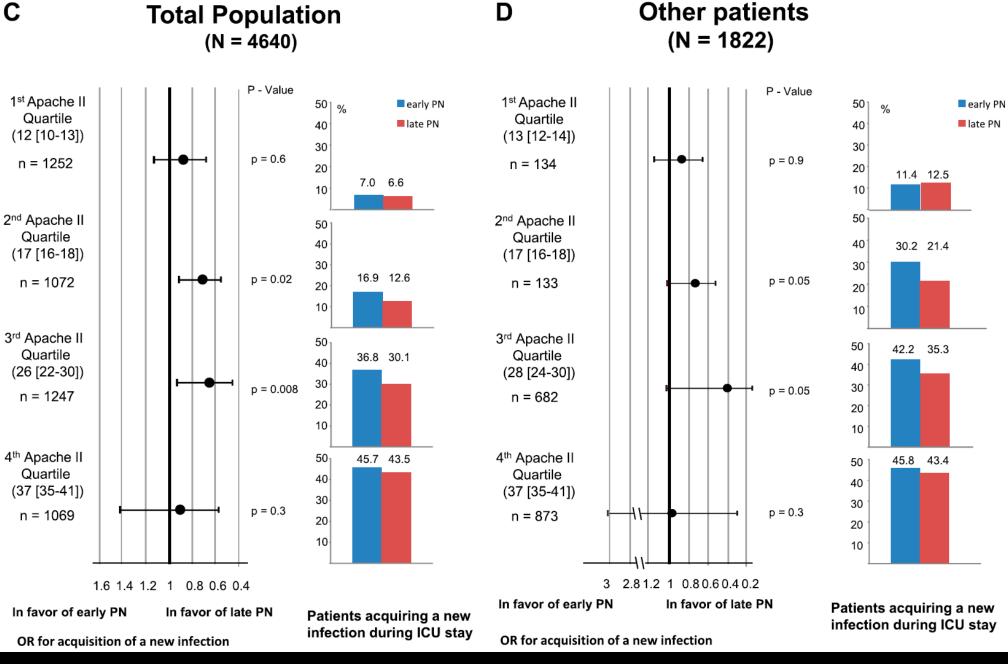
# **EPaNIC: Early vs. Late TPN**

#### Table 2. Outcomes.\*

| Variable                                    | Late-Initiation Group<br>(N=2328) | Early-Initiation Group<br>(N=2312) | P Value |
|---------------------------------------------|-----------------------------------|------------------------------------|---------|
| Safety outcome                              |                                   |                                    |         |
| Vital status — no. (%)                      |                                   |                                    |         |
| Discharged live from ICU within 8 days      | 1750 (75.2)                       | 1658 (71.7)                        | 0.007   |
| Death                                       |                                   |                                    |         |
| In ICU                                      | 141 (6.1)                         | 146 (6.3)                          | 0.76    |
| In hospital                                 | 242 (10.4)                        | 251 (10.9)                         | 0.63    |
| Within 90 days after enrollment†            | 257 (11.2)                        | 255 (11.2)                         | 1.00    |
| Nutrition-related complication — no. (%)    | 423 (18.2)                        | 434 (18.8)                         | 0.62    |
| Hypoglycemia during intervention — no. (%)‡ | 81 (3.5)                          | 45 (1.9)                           | 0.001   |
| Primary outcome                             |                                   |                                    |         |
| Duration of stay in ICU§                    |                                   |                                    |         |
| Median (interquartile range) — days         | 3 (2-7)                           | 4 (2–9)                            | 0.02    |
| Duration >3 days — no. (%)                  | 1117 (48.0)                       | 1185 (51.3)                        | 0.02    |

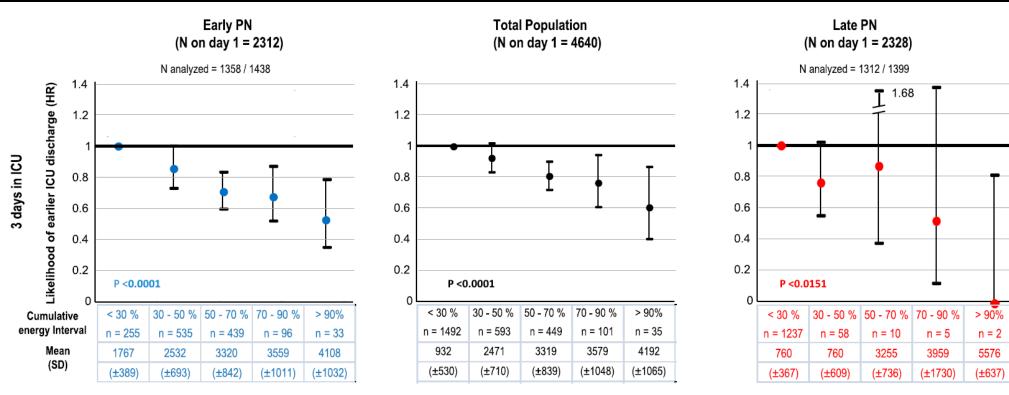
# **EPaNIC: Early vs. Late TPN**

| Secondary outcome                                                                                     |                  |             |       |
|-------------------------------------------------------------------------------------------------------|------------------|-------------|-------|
| New infection — no. (%)                                                                               |                  |             |       |
| Any                                                                                                   | 531 (22.8)       | 605 (26.2)  | 0.008 |
| Airway or lung                                                                                        | 381 (16.4)       | 447 (19.3)  | 0.009 |
| Bloodstream                                                                                           | 142 (6.1)        | 174 (7.5)   | 0.05  |
| Wound                                                                                                 | 64 (2.7)         | 98 (4.2)    | 0.006 |
| Urinary tract                                                                                         | 60 (2.6)         | 72 (3.1)    | 0.28  |
| Mechanical ventilation                                                                                |                  |             |       |
| Median duration (interquartile range) — days                                                          | 2 (1-5)          | 2 (1-5)     | 0.02  |
| Duration >2 days — no. (%)                                                                            | 846 (36.3)       | 930 (40.2)  | 0.006 |
| Hazard ratio (95% CI) for time to definitive weaning<br>from ventilation<br>Duration of hospital stay | 1.06 (0.99–1.12) |             | 0.07  |
| Median (interquartile range) — days                                                                   | 14 (9–27)        | 16 (9–29)   | 0.004 |
| Duration >15 days — no. (%)                                                                           | 1060 (45.5)      | 1159 (50.1) | 0.001 |
| Hazard ratio (95% CI) for time to discharge alive from hospital                                       | 1.06 (1.00–1.13) |             | 0.04  |


#### Role of Disease and Macronutrient Dose in the Randomized Controlled EPaNIC Trial

#### A Post Hoc Analysis

Michael P. Casaer<sup>1,2</sup>, Alexander Wilmer<sup>3</sup>, Greet Hermans<sup>2,3</sup>, Pieter J. Wouters<sup>1,2</sup>, Dieter Mesotten<sup>1,2</sup>, and Greet Van den Berghe<sup>1,2</sup>


- Post hoc analysis of EPaNIC trial
- Looked at mortality and infections between early vs late PN in pt subgroups
  - APACHE II Quartiles
  - Excluding cardiac surgery patients
- Overall Kcal and Glucose vs. protein as kcal
  - Complex statistics to look at kcal to days 3,5, & 7

Casaer MP, et al. AJRCCM. 2013; 187:247-55.



Casaer MP, et al. AJRCCM. 2013; 187:247-55.

# EPaNIC Post hoc: Overall Kcal and Alive ICU Discharge



N analyzed = 893 / 975

#### Casaer MP, et al. AJRCCM. 2013; 187:247-55.

N analyzed = 823/ 913

### **Summary of Early PN in Critical Illness**

- A little bit of conflicting results
- No real benefit demonstrated in clinical outcomes
- Although study of early supplemental PN demonstrated harm, overall PN is probably safe
- No real data on PN in malnourished patients or subsets of critical illnesses

How much should we feed patients? (especially early in critical illness)

## **Quantity of Feeds**

- Limited data suggest initiating EN w/in 24 hrs is beneficial (esp trauma)
- But those data don't address quantity of enteral feeding
- If we start enteral feeds within 24-48 hours, do we have to get to target or goal rates as soon as possible?

### **"Trophic" Feeds**

- The minimum amount of enteral nutrition required for the mucosal benefits is unknown
- As little as 10-40% of caloric requirements preserves mucosal structure in dogs<sup>1</sup> and pigs <sup>2</sup>
- Trophic= nourishment or growth
  - Low volume continuous feeds for the purpose of nourishing the intestinal mucosa

1. Owens L, et al. J of Nutrition. 2002;132:2717-22. 2. Burrin DG, et al. Am J Clin Nutr. 2000;71:16

### **EN Benefits: Achieved at Different Doses?**

#### Non-Nutrition benefits - Lower dose, needed in all patients

Gastrointestinal responses

Gut integrity Gut/lung axis of inflamm Motility/contractility Absorptive capacity

Immune responses

Commensal bacteria Secretory IgA, GALT tissue Trophic effect epithelium Reduced bact virulence

Modulate regulatory cells Stimulate oral tolerance Duod colon receptors *Metabolic responses* Incretin to insulin sens Attenuate stress metab

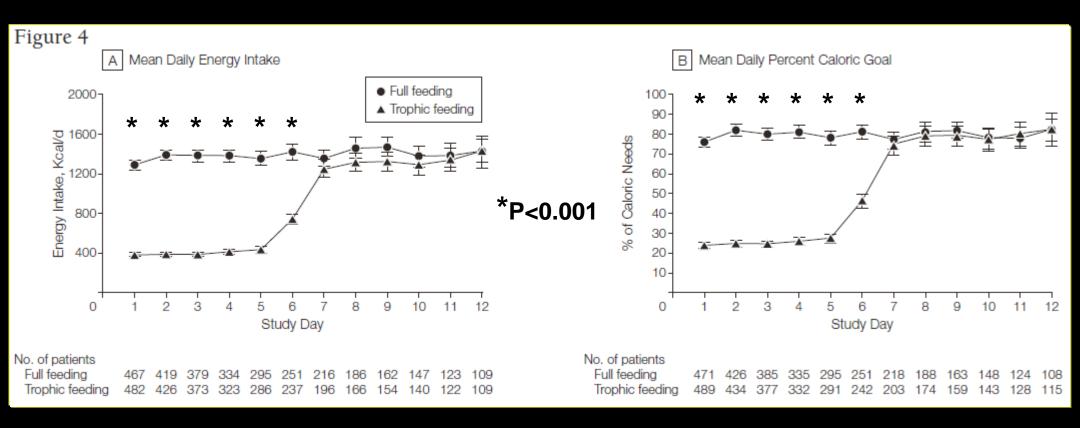
Modulate regulatory cellsPromote Th-2 >Th-1 lymphocytesStimulate oral toleranceMaintain MALT tissueDuod colon receptorsModulate adhesion molecules

Reduce hyperglycemia (AGES) Enhance fuel utilization

Nutrition benefits – Higher dose, needed in high risk patients

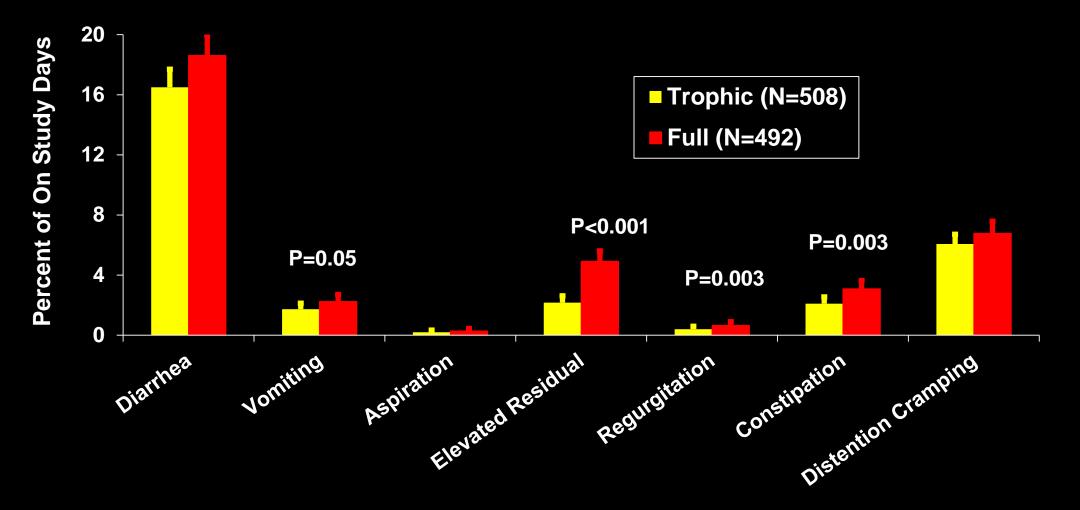
Protein, calories Maintain LBM Micronutrients, anti-oxidants Stimulate protein synthesis

S McClave, R Martindale, T Rice, D Heyland (CCM 2014;42:2600)


Initial Trophic vs Full Enteral Feeding in Patients With Acute Lung Injury The EDEN Randomized Trial

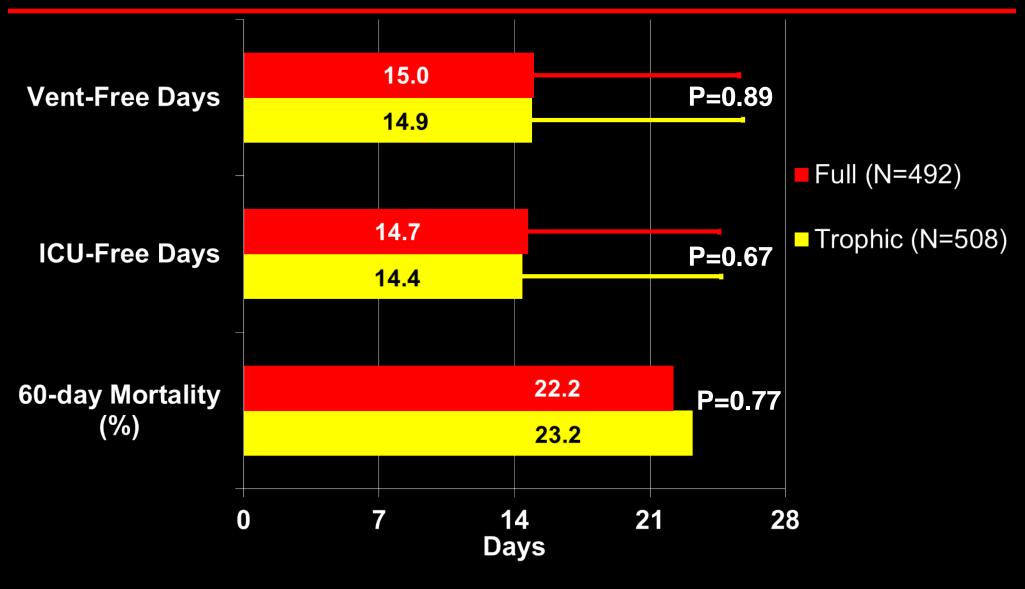
The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network\*

- 1000 mech vent patients with ALI
  - Mostly Medical Pneumonia (65%); Sepsis (15%)
  - 38% on vasopressors at enrollment
  - GRV threshold 400 cc
- Factorial design with n-3 fatty acid / placebo
- Trophic (N=508) vs. Goal (N=492) for first 6d
- Primary endpoint: Ventilator-free days


JAMA, February 22/29, 2012-Vol 307, No. 8 795

### **EDEN: Enteral Feeds Delivered**




JAMA, February 22/29, 2012-Vol 307, No. 8 795

### EDEN: Percent of Feeding Days with Specific GI Intolerances



eFig 1: NHLBI ARDS Network. JAMA. 2012; 307(8):795.

### **EDEN: Outcomes**



NHLBI ARDS Network. JAMA. 2012; 307(8):795.

Optimal Initial Amount of Enteral Feeding in Critically III Patients: Systematic Review and Meta-Analysis

- Meta-analysis of adult ICU patients
- Initial trophic vs full feeding
- 4 RCTs (N=1540 participants total)
- Primary analyses: Mortality

Choi EY, Park DA, Park J. JPEN. 2015;39(3):291-300.

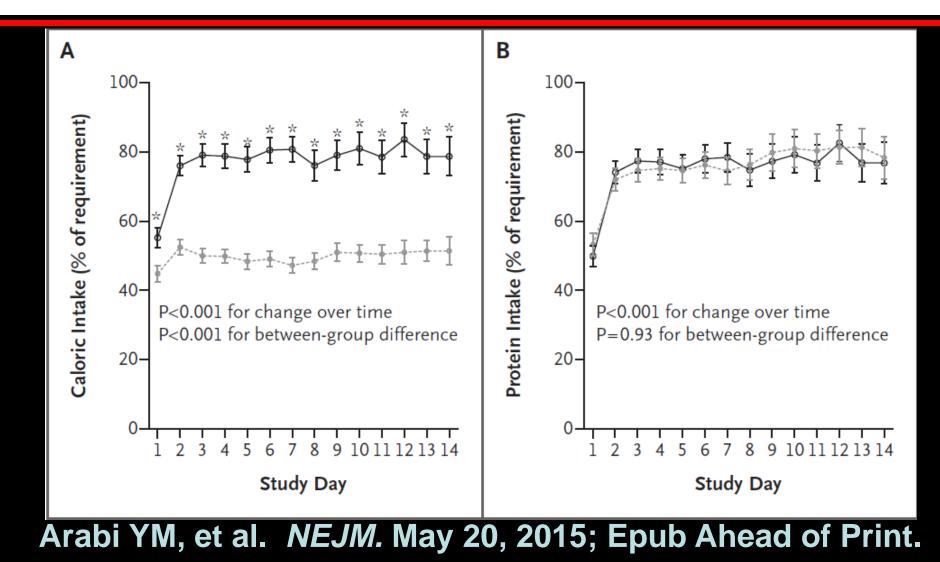
Optimal Initial Amount of Enteral Feeding in Critically III Patients: Systematic Review and Meta-Analysis

- No diff in Mortality (OR 0.95; 0.74-1.20; P=0.65)
- Subgroup analysis:

- Trophic >33% of goal: OR 0.61 (0.39-0.97; P=0.04)

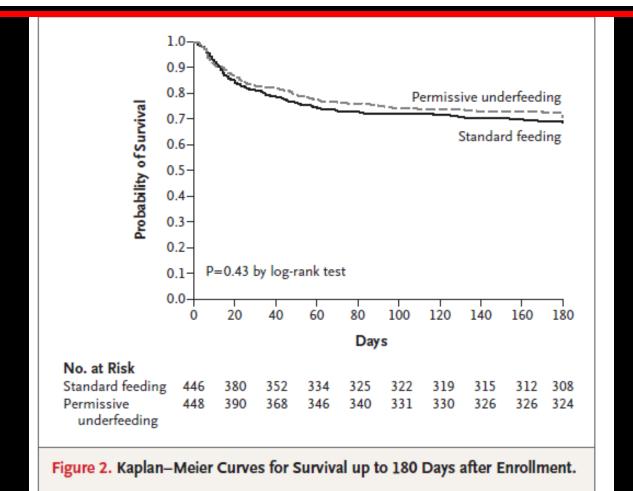
- No difference in Hospital or ICU LOS
- Serious GI Intolerance: 23% trophic vs 31% full (OR 0.66; 0.39-1.12; P=0.12)

Choi EY, Park DA, Park J. JPEN. 2015;39(3):291-300.


Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults

### 894 critically ill patients

- -7 hospitals in Saudia Arabia and Canada
- -75% medical, 21% non-op trauma
- 96% MV, 55% on pressors
- Randomized, open label trial
- 40-60% goal cal + protein vs 70-100% goal kcal for up to 14 days
- Primary Endpoint: 90 day mortality

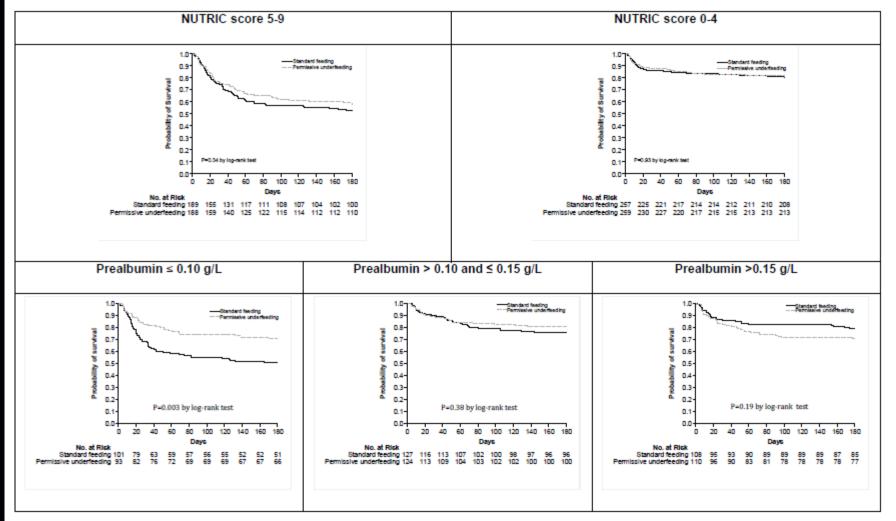

Arabi YM, et al. NEJM. 2015;372(25):2398-2408.

### Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults



| Outcome                                                   | Permissive Underfeeding<br>(N = 448) | Standard Feeding<br>(N=446) | Relative Risk<br>(95% CI) | P Value |
|-----------------------------------------------------------|--------------------------------------|-----------------------------|---------------------------|---------|
| Death by 90 days — no./total no. (%)                      | 121/445 (27.2)                       | 127/440 (28.9)              | 0.94 (0.76–1.16)          | 0.58    |
| Death in the ICU — no. (%)                                | 72 (16.1)                            | 85 (19.1)                   | 0.84 (0.63–1.12)          | 0.24    |
| Death by 28 days — no./total no. (%)                      | 93/447 (20.8)                        | 97/444 (21.8)               | 0.95 (0.74–1.23)          | 0.7     |
| Death in the hospital — no./total no. (%)                 | 108/447 (24.2)                       | 123/445 (27.6)              | 0.87 (0.70–1.09)          | 0.24    |
| Death by 180 days — no./total no. (%)                     | 131/438 (29.9)                       | 140/436 (32.1)              | 0.93 (0.76–1.14)          | 0.48    |
| Duration of mechanical ventilation — days                 |                                      |                             |                           |         |
| Median                                                    | 9                                    | 10                          |                           | 0.49†   |
| Interquartile range                                       | 5–15                                 | 5–16                        |                           |         |
| Days free from mechanical ventilation                     |                                      |                             |                           |         |
| Median                                                    | 77                                   | 75                          |                           | 0.48†   |
| Interquartile range                                       | 0–84                                 | 0-84                        |                           |         |
| ICU length of stay — days                                 |                                      |                             |                           |         |
| Median                                                    | 13                                   | 13                          |                           | 0.46†   |
| Interquartile range                                       | 8–21                                 | 8–20                        |                           |         |
| ICU-free days                                             |                                      |                             |                           |         |
| Median                                                    | 72                                   | 71                          |                           | 0.28†   |
| Interquartile range                                       | 0-81                                 | 0–79                        |                           |         |
| Hospital length of stay — days                            |                                      |                             |                           |         |
| Median                                                    | 28                                   | 30                          |                           | 0.24†   |
| Interquartile range                                       | 15–54                                | 14–63                       |                           |         |
| Incident renal-replacement therapy<br>— no./total no. (%) | 29/406 (7.1)                         | 45/396 (11.4)               | 0.63 (0.40–0.98)          | 0.04    |

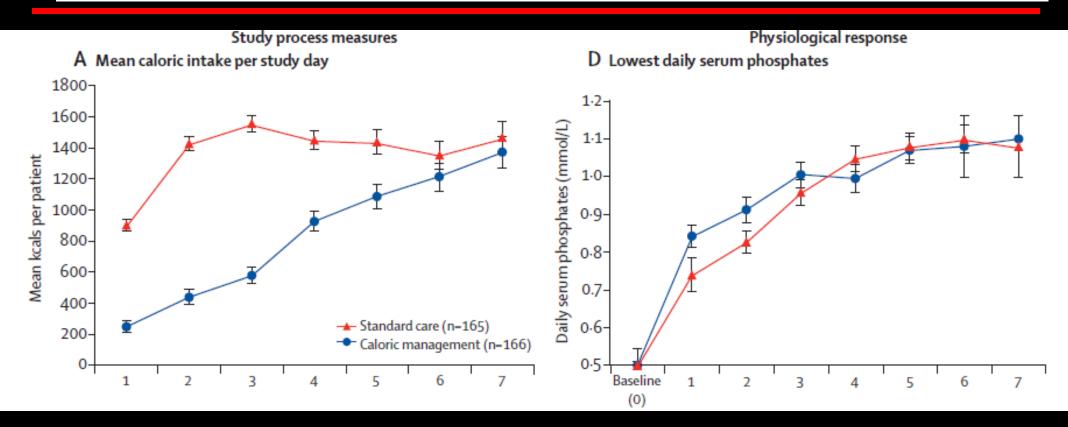
### Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults



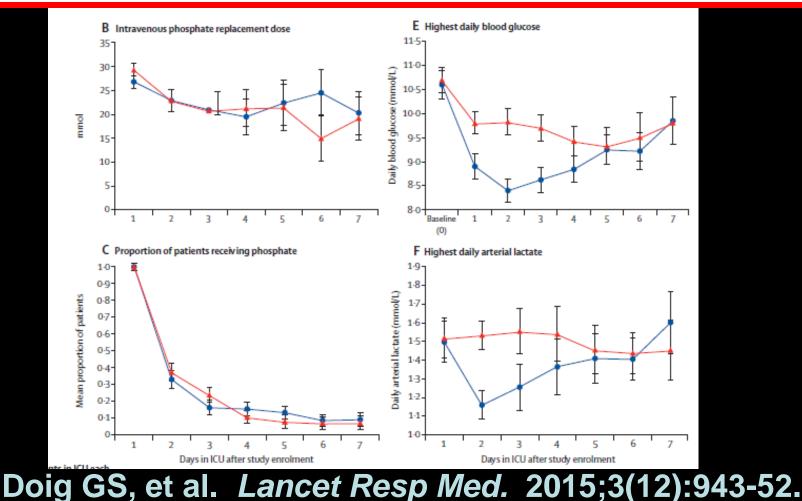

### Arabi YM, et al. NEJM. 2015;372(25):2398-2408.

#### Permissive Underfeeding or Standard Enteral Feeding in High and Low

#### Nutritional Risk Critically III Adults: Post-hoc Analysis of the PermiT trial


Yaseen M Arabi MD<sup>1</sup>, Abdulaziz S Aldawood MD<sup>1</sup>, Hasan M Al-Dorzi MD<sup>1</sup>, Hani M Tamim MPH, PhD<sup>1,2</sup>, Samir H Haddad MD<sup>1</sup>, Gwynne Jones MD<sup>3</sup>, Lauralyn McIntyre MD MSc<sup>3</sup>, Othman Solaiman MD<sup>4</sup>, Maram H Sakkijha RD<sup>1</sup>, Musharaf Sadat MBBS<sup>1</sup>, Shihab Mundekkadan RN<sup>1</sup>, Anand Kumar MD<sup>5</sup>, Sean. M Bagshaw MD MSc<sup>6</sup>, Sangeeta Mehta MD<sup>7</sup> and the PermiT trial group




Arabi YM, et al. AJRCCM. 2017;195(5):652-662.

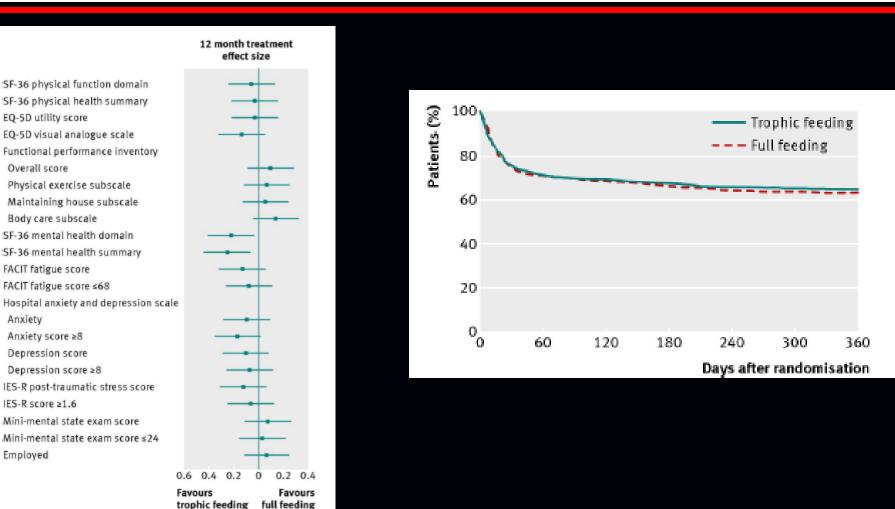
- 339 pts from 13 ICUs in Australia / New Zealand
- Refeeding syndrome = low phos by day 3 of EN
- RCT, single blind std vs restricted calories
  - Std: Continue advance to full EN with phos repletion
  - Restricted: 20 kcal/hr until phos repleted (≥ 2 days)
- 1<sup>o</sup> outcome: Days alive outside of ICU
- 65% Medical; APACHE II 18; 91% ventilated

Doig GS, et al. Lancet Resp Med. 2015;3(12):943-52.



Doig GS, et al. Lancet Resp Med. 2015;3(12):943-52.




|                                     | Standard care<br>(n=165 patients)    | Caloric management<br>(n=166 patients) | Risk difference (95% CI) | p value |
|-------------------------------------|--------------------------------------|----------------------------------------|--------------------------|---------|
| Vital status (% alive)              |                                      |                                        |                          |         |
| ICU discharge status                | 150/165 (91%)                        | 157/166 (95%)                          | 3·7% (-5·3 to 12·7)      | 0.20    |
| Hospital discharge status           | 135/165 (82%)                        | 151/166 (91%)                          | 9·2% (0·7 to 17·7)       | 0.017   |
| Day 60 status                       | 128/163 (79%)*                       | 149/164 (91%)*                         | 12·3% (3·9 to 20·7)      | 0.002   |
| Day 90 status                       | 128/163 (79%)*                       | 143/164 (87%)*                         | 8.7% (0.04 to 17.0)      | 0.041   |
| Length of stay (days)               |                                      |                                        |                          |         |
| ICU                                 | 10·0 (9·2 to 10·9)                   | 11·4 (10·5 to 12·4)                    | 1.4 (-0.42 to 3.5)       | 0.14    |
| Hospital                            | 21.7 (20.0 to 23.5)                  | 27·9 (25·7 to 30·3)                    | 6·2 (2·0 to 11·2)        | 0.003   |
| Quality of life and physical functi | ion scores† (n responses available f | or analysis)                           |                          |         |
| RAND-36 general health              | 53·4 (22·6; n=124/128)               | 46·0 (26·0 n=136/143)                  | -7·5 (-13·4 to -1·5)     | 0.014   |
| ECOG performance status             | 1.3 (1.0; n=125/128)                 | 1·5 (1·1; n=135/143)                   | 0.18 (-0.08 to 0.43)     | 0.18    |
| RAND-36 physical function           | 47·3 (35·0; n=123/128)               | 40·9 (33·4; n=135/143)                 | -6·4 (-14·8 to 2·0 )     | 0.13    |
|                                     |                                      |                                        |                          |         |

### Doig GS, et al. Lancet Resp Med. 2015;3(12):943-52.

### Restricted versus continued standard caloric intake during **Overall survival time** Α the 100 Standard care adu Caloric management sinc 90-Survival (%) 80-70 Censored log-rank p=0.0020

Doig GS, et al. Lancet Resp Med. 2015;3(12):943-52.

### One year outcomes in patients with acute lung injury randomised to initial trophic or full enteral feeding: prospective follow-up of EDEN randomised trial



Needham DM, et al. BMJ. 2013;346:f1532

Anxiety

#### Physical and Cognitive Performance of Patients with Acute Lung Injury 1 Year after Initial Trophic versus Full Enteral Feeding

**EDEN Trial Follow-up** 

#### TABLE 3. TWELVE-MONTH RESULTS BY TREATMENT GROUP\*

|                                           | Trophic Feeding $(n = 75)$ | Full Feeding $(n = 74)$ | Treatment Effect (95% CI) <sup>†</sup> | P Value <sup>†</sup> |
|-------------------------------------------|----------------------------|-------------------------|----------------------------------------|----------------------|
| Physical outcomes                         |                            |                         |                                        |                      |
| 6-min-walk distance, % predicted          | 63 (25)                    | 70 (24)                 | -6 (-14, 2)                            | 0.136                |
| 4-m timed walk speed, m/s                 | 0.98 (0.29)                | 1.08 (0.29)             | -0.07 (-0.16, 0.02)                    | 0.125                |
| Manual Muscle Test score                  | 55.9 (4.0)                 | 56.2 (5.2)              | -0.1 (-1.6, 1.4)                       | 0.901                |
| Manual Muscle Test score < 48, no. (%)    | 3 (4)                      | 3 (5)                   | 0.84 (0.16, 4.39)                      | 0.833                |
| Hand grip strength, % predicted           | 82 (27)                    | 85 (26)                 | -3 (-12, 5)                            | 0.462                |
| Maximal inspiratory pressure, % predicted | 97 (33)                    | 99 (31)                 | -4 (-15, 6)                            | 0.421                |
| FEV1, % predicted                         | 77 (19)                    | 80 (19)                 | -2 (-9, 4)                             | 0.424                |
| FVC, % predicted                          | 78 (18)                    | 83 (19)                 | -4 (-10, 1)                            | 0.144                |
| Body mass index, kg/m <sup>2</sup>        | 29.5 (7.2)                 | 29.6 (9.1)              | 0.0 (-2.9, 2.8)                        | 0.985                |
| Arm fat area, %                           | 38.9 (12.1)                | 39.7 (11.5)             | -1.2 (-4.9, 2.6)                       | 0.550                |
| Arm muscle area, %                        | 50.8 (10.7)                | 50.4 (10.0)             | 0.7 (-2.7, 4)                          | 0.703                |
| Cognitive outcomes                        |                            |                         |                                        |                      |
| Cognitive impairment, no. (%)             | 22 (29)                    | 15 (20)                 | 1.45 (0.71, 3)                         | 0.311                |
| COWA                                      | 32 (13)                    | 34 (13)                 | -2 (-6, 2)                             | 0.431                |
| COWA, ≤1.5 SDs, no. (%)                   | 18 (24)                    | 18 (24)                 | 0.93 (0.44, 1.95)                      | 0.843                |
| Digit Span                                | 9.8 (3.2)                  | 9.9 (3.1)               | 0.1 (-0.8, 1.1)                        | 0.800                |
| Digit Span, ≤1.5 SDs, no. (%)             | 6 (8)                      | 4 (5)                   | 1.57 (0.41, 6.06)                      | 0.512                |
| Hayling Sentence Completion               | 5.5 (1.6)                  | 5.2 (1.8)               | 0.4 (-0.1, 1.0)                        | 0.119                |
| Hayling, ≤1.5 SDs, no. (%)                | 7 (10)                     | 14 (19)                 | 0.38 (0.14, 1.03)                      | 0.058                |
| Logical Memory I                          | 9.3 (3.4)                  | 9.9 (3.4)               | -0.5 (-1.5, 0.6)                       | 0.379                |
| Logical Memory I, ≤1.5 SDs, no. (%)       | 13 (18)                    | 9 (12)                  | 1.58 (0.65, 3.85)                      | 0.316                |
| Logical Memory II                         | 9.0 (3.0)                  | 9.4 (3.2)               | -0.4 (-1.4, 0.6)                       | 0.443                |
| Logical Memory II, ≤1.5 SDs, no. (%)      | 10 (14)                    | 7 (10)                  | 1.49 (0.56, 3.92)                      | 0.423                |
| Similarities                              | 9.8 (3.3)                  | 10.5 (3.4)              | -0.2 (-1.3, 0.8)                       | 0.648                |
| Similarities, ≤1.5 SDs, no. (%)           | 8 (11)                     | 7 (10)                  | 1.02 (0.36, 2.83)                      | 0.976                |

### Needham DM, et al. AJRCCM. 2013;188(5):567-576.

## **Dosing of EN**





- No EN if low nutritional risk, low dz severity (NRS 2002 ≤ 3 or Nutric Score ≤5) for first week<sup>1,2</sup>
- Trophic or full feeds appropriate for ALI/ARDS and pts expected to be on MV ≥ 72 hrs<sup>3</sup>
- Advance to goal as tolerated over 24-48 hrs
  If high nutrition risk (NRS 2002 ≥5, Nutric ≥6)<sup>1,2</sup>
  Attempt to provide > 80% goal<sup>4</sup>
  - <sup>1</sup>Kondrup J (Clin Nutr 2002) <sup>2</sup>Heyland DK (Clin Nutr 2015) <sup>3</sup>Rice T (JAMA 2012) <sup>4</sup>Heyland DK (CCM 2011;39:1)

Should Indirect Calorimetry Be Used to Determine How Much to Feed Critically III Patients? Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial

Claudia Paula Heidegger, Mette M Berger, Séverine Graf, Walter Zingg, Patrice Darmon, Michael C Costanza, Ronan Thibault, Claude Pichard

- 2 hospitals in Switzerland
- 305 pts receiving <60% of target EN on day 3</li>
  - Expected ICU > 5 days; survival > 7 days
  - Excl: on TPN, pregnant, GI dysfxn or ileus
- Randomized to EN (n=152) vs suppl PN d 4-8
- Primary Endpoint: Infection b/w d 9-28
- 61 yo; APACHE 23; 45% surg; 45% infxn on adm

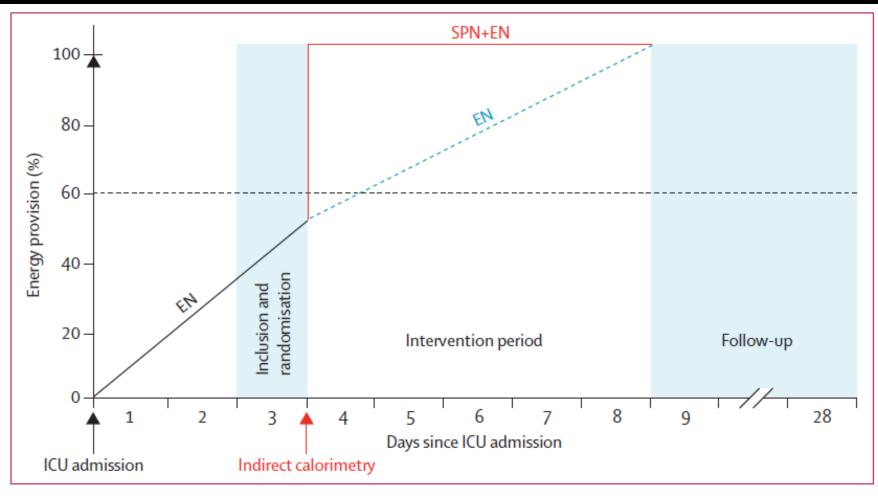
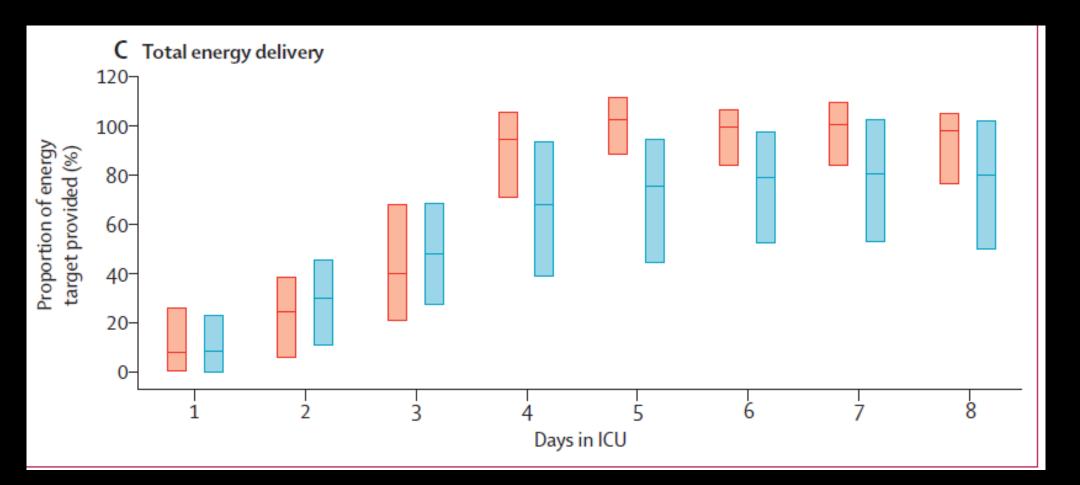
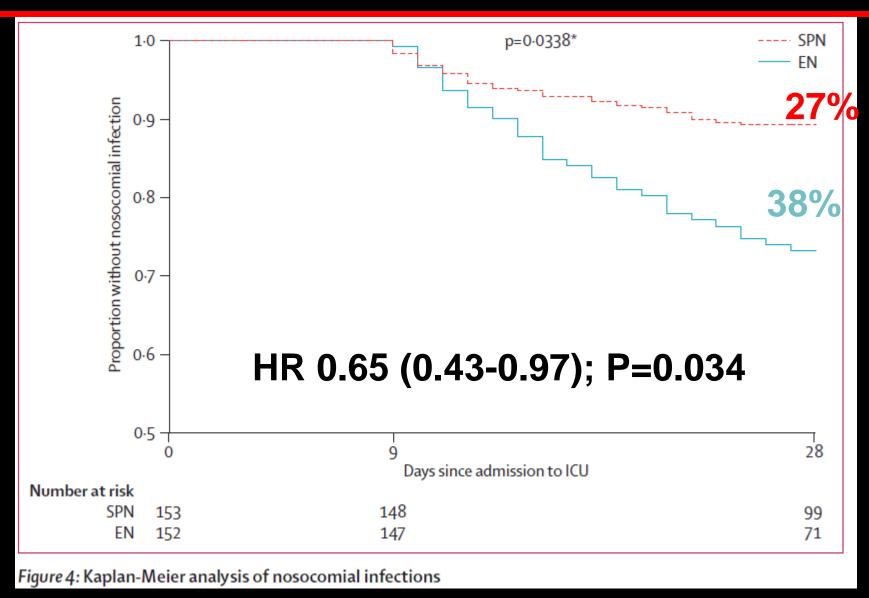





Figure 1: Trial design





|                       | Intervention | period (days 4–8) | Follow-up (days 9–28) |          |  |  |
|-----------------------|--------------|-------------------|-----------------------|----------|--|--|
|                       | SPN          | EN                | SPN                   | EN       |  |  |
| Pneumonia             | 35 (67%)     | 28 (65%)          | 22 (46%)              | 32 (45%) |  |  |
| Bloodstream infection | 10 (19%)     | 6 (14%)           | 9 (19%)               | 13 (18%) |  |  |
| Urogenital infection  | 4 (8%)       | 2 (5%)            | 7 (15%)               | 5 (7%)   |  |  |
| Abdominal infection   | 1 (2%)       | 4 (9%)            | 8 (17%)               | 8 (11%)  |  |  |
| Other infection*      | 2 (4%)       | 3 (7%)            | 2 (4%)                | 13 (18%) |  |  |

Data are number of events (%). Patients can have one or more infections. Comparisons by type of infections were not significant for the intervention period (p=0.4866) or follow-up period (p=0.1476). SPN=supplemental parenteral nutrition. EN=enteral nutrition. \*Skin, bone, soft tissue, ear, nose, throat, upper respiratory, and non-pulmonary intrathoracic infections.

Table 3: Distribution of nosocomial infections during intervention and follow-up

|                                                                           | SPN (n=153)        |         | EN (n=152)         |         | p value | Coefficient (95% CI) |
|---------------------------------------------------------------------------|--------------------|---------|--------------------|---------|---------|----------------------|
|                                                                           | Mean (SD) or n (%) | 95% Cl  | Mean (SD) or n (%) | 95% CI  |         |                      |
| Duration of study (days 1–28)                                             |                    |         |                    |         |         |                      |
| Antibiotic days for nosocomial infections*                                | 5 (7)              | 4-6     | 6 (7)              | 5-7     | 0.0298  | -0·3 (-0·6 to -0·0)  |
| Antibiotic days                                                           | 11 (8)             | 9-12    | 13 (9)             | 11-14   | 0.0257  | -2·2 (-4·2 to -0·3)  |
| Antibiotic-free days                                                      | 15 (9)             | 14-17   | 13 (10)            | 11-14   | 0.0126  | 2.7 (0.6 to 4.8)     |
| Hours on mechanical ventilation in all patients‡                          | 153 (163)          | 126-178 | 166 (160)          | 138–189 | 0.2912  | -0·1 (-0·3 to 0·1)   |
| Hours on mechanical ventilation in patients without nosocomial infection‡ | 83 (101)           | 58-105  | 108 (115)          | 77-135  | 0.0747  | -0·3 (-0·6 to 0·0)   |
|                                                                           | 12 (10)            | 11 14   | 12 (11)            | 12 14   | 0.2502  | 12(25to10)           |
| Days in ICU                                                               | 13 (10)            | 11-14   | 13 (11)            | 12–14   | 0.2592  | -1·3 (-3·5 to 1·0)   |
| Days in hospital                                                          | 31 (23)            | 29–38   | 32 (23)            | 29-39   | 0.8781  | -0·4 (-5·9 to 5·0)   |
| ICU mortality§                                                            | 8 (5%)             | 3-10    | 12 (7%)            | 5-13    | 0.2118  | 0.6 (0.2 to 1.6)     |
| General mortality§                                                        | 20 (13%)           | 9–19    | 28 (18%)           | 13-25   | 0.1193  | 0.6 (0.3 to 1.2)     |

Linear regression analyses were done for all secondary outcomes (adjusted for Simplified Acute Physiology II [SAPS II] score, hospital, and admission category) except for antibiotic days for nosocomial infections, hours on mechanical ventilation, and mortality. SPN=supplemental parenteral nutrition. EN=enteral nutrition. ICU=intensive-care unit. \*Negative binomial regression analysis was adjusted for SAPS II score, hospital, and admission category. †Statistically significant with Benjamini-Hochberg correction. ‡Negative binomial regression analysis was adjusted for SAPS II score, hospital, and admission category, and controlled for length of ICU stay. §Cox proportional hazard ratios, adjusted for SAPS II score, hospital, and admission category.

Table 4: Secondary outcomes during follow-up and throughout duration of study

CrossMark

Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial

- Open-label, RCT at single center in Denmark
- 199 mech vent pts expected ICU stay > 3 days
  - < 24 hrs from ICU admission; Had central line</p>
  - Excl: BMI < 17 or appeared malnourished</p>
- Randomized to EGDN (n=100) vs usual care
- Primary Endpoint: Physical Component Summary of SF 36 at 6 months

CrossMark

Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial

- EGDN (Early Goal Directed Nutrition) from d1
  - Use Indirect Calorimetry to estimate calorie needs
  - Use Urine Urea Nitrogen to estimate protein needs
  - Use EN and Suppl PN to meet cal and protein needs
- Usual Care
  - Target 25 kcal / kg / day of calories with EN
  - Add supplemental PN on day 7 if not meeting

#### SEVEN-DAY PROFILE PUBLICATION



Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial

#### Table 2 Nutrition characteristics in ICU after randomisation

| Variable                                             | Early goal-directed nutrition<br>( <i>N</i> = 100) | Standard of care<br>( <i>N</i> = 99) |
|------------------------------------------------------|----------------------------------------------------|--------------------------------------|
| Measured <sup>a</sup> energy requirement, kcal/day   | 2069 (1816–2380)                                   | 1887 (1674–2244)                     |
| Calculated <sup>b</sup> energy requirement, kcal/day | 1950 (1750–2125)                                   | 1875 (1650–2100)                     |
| Energy intake, kcal/day                              | 1877 (1567–2254)                                   | 1061 (745–1470)                      |
| Energy balance <sup>c</sup> , kcal/day               | −66 (−157 to −6)                                   | -787 (-1223 to -333)                 |
| Measured <sup>d</sup> protein requirement, g/kg/day  | 1.63 (1.36–2.05)                                   | 1.16 (0.89–1.62)                     |
| Protein intake, g/kg/day                             | 1.47 (1.13–1.69)                                   | 0.50 (0.29–0.69)                     |
| Protein balance <sup>c</sup> , g/kg/day              | -0.28 (-0.76 to 0.11)                              | -0.69 (-1.02 to -0.38)               |
| Plasma urea, mmol/l                                  | 13.5 (8.7–21.9)                                    | 9.0 (5.6–14.4)                       |
| 24-h urinary urea, mmol/day                          | 516 (368–760)                                      | 320 (175–482)                        |

#### SEVEN-DAY PROFILE PUBLICATION



### Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial

#### Table 3 Primary and secondary outcome measures in the two intervention groups

| Primary outcome measure                                                          |               | Early goal-directed nutrition ( <i>N</i> = 100) |               | Standard of care $(N = 99)$ |               | Adjusted mean difference<br>(95% CI) | <i>p</i> value |
|----------------------------------------------------------------------------------|---------------|-------------------------------------------------|---------------|-----------------------------|---------------|--------------------------------------|----------------|
| PCS score at 6 months adjusted for presence of had tologic malignancy, mean (SD) | ema-          | 22.9 (21.8)                                     |               | 23.0 (22.3)                 |               | -0.0 <sup>a</sup> (-5.9 to 5.8)      | 0.99           |
| Secondary outcome measures                                                       | Early<br>(N = | goal-directed nutrition<br>100)                 | Stand<br>(N = | dard of care<br>99)         | Relat<br>(95% | ive risk or mean difference<br>Cl)   | <i>p</i> value |
| Vital status, no. (%)                                                            |               |                                                 |               |                             |               |                                      |                |
| Dead at day 28                                                                   | 20 (20        | 0%)                                             | 21 (21        | 1%)                         | 0.94 (        | 0.55–1.63)                           | 0.83           |
| Dead at day 90                                                                   | 30 (30        | 0%)                                             | 32 (32        | 2%)                         | 0.93 (        | 0.61–1.40)                           | 0.72           |
| Dead at 6 months                                                                 | 37 (37        | 7%)                                             | 34 (34        | 4%)                         | 1.08 (        | 0.74–1.57)                           | 0.70           |
| Length of stay among 6-month survivors, median days (IQR)                        |               |                                                 |               |                             |               |                                      |                |
| ICU                                                                              | 7 (5–2        | 22)                                             | 7 (4–1        | 11)                         | NA            |                                      | 0.21           |
| Hospital                                                                         | 30 (12        | 2–53)                                           | 34 (14        | 4–53)                       | NA            |                                      | 1.00           |

## **EAT-ICU Study**

| Secondary outcome measures                               | Early goal-directed nutrition (N = 100) | Standard of care<br>(N = 99) | Relative risk or mean difference<br>(95% CI) | <i>p</i> value    |
|----------------------------------------------------------|-----------------------------------------|------------------------------|----------------------------------------------|-------------------|
| Percentage of days alive without life support at da      | y 90, median (IQR)                      |                              |                                              |                   |
| RRT                                                      | 100% (97–100)                           | 100% (97–100)                | NA                                           | 0.64              |
| Mechanical ventilation                                   | 86% (39–96)                             | 92% (56–96)                  | NA                                           | 0.27              |
| Inotrope/vasopressor support                             | 96% (82–98)                             | 96% (84–98)                  | NA                                           | 0.67              |
| Time to new organ failure, mean days (SD)                | 5.4 (0.4)                               | 5.9 (0.5)                    | NA                                           | 0.33 <sup>b</sup> |
| New organ failure in ICU, no. (%)                        | 81 (81%)                                | 77 (78%)                     | 1.04 (0.90–1.20)                             | 0.57              |
| Time to death, mean days (SD)                            | 60 (13)                                 | 91 (24)                      | NA                                           | 0.51 <sup>c</sup> |
| New use of RRT in ICU, no. (%)                           | 22 (22%)                                | 17 (17%)                     | 1.28 (0.73–2.26)                             | 0.39              |
| Time to any infection, mean days (SD)                    | 20 (1)                                  | 51 (9)                       | NA                                           | 0.80 <sup>b</sup> |
| Nosocomial infections, no. (%)                           |                                         |                              |                                              |                   |
| Any                                                      | 19 (19%)                                | 12 (12%)                     | 1.57 (0.80–3.05)                             | 0.18 <sup>d</sup> |
| Pneumonia                                                | 4 (4%)                                  | 4 (4%)                       |                                              |                   |
| Bloodstream infection                                    | 5 (5%)                                  | 4 (4%)                       |                                              |                   |
| CVC-related sepsis                                       | 3 (3%)                                  | 0 (0%)                       |                                              |                   |
| Intra-abdominal infection                                | 3 (3%)                                  | 3 (3%)                       |                                              |                   |
| Urogenital sepsis                                        | 5 (5%)                                  | 1 (1%)                       |                                              |                   |
| Skin and soft-tissue infection                           | 3 (3%)                                  | 0 (0%)                       |                                              |                   |
| Severe adverse reaction, no. (%)                         | 1 (1%)                                  | 2 (2%)                       | NA                                           | _e                |
| Mental component summary score at 6 months,<br>mean (SD) | 23.6 (24.5)                             | 26.8 (25.0)                  | -3.1 (-10.5 to 4.2)                          | 0.40              |



 55 y.o. male COPD with baseline PaCO2 55, NIDDM, HTN, atrial fibrillation (on coumadin) presents with pneumonia and septic shock. He has new renal failure with creatinine 5.0. Intubated in ED, started on norepinephrine drip, and admitted to MICU. On

70% FiO2, PEEP 12 with a CXR that looks like ARDS.

### **Nutrition Questions**

- How should we feed him?
   Enteral; Gastric
- When should we start feeding him?
  Right away (assuming some hemodynamic stability)
- What should we feed him?
  - TF "du jour", +/- protein supplementation
- How much should we feed him (goals)?
  Trophic vs permissive underfeeding vs. full-calorie; No IC
- What safety measures should we employ?
  No GRV; Clinical Exam



- Nutritional Assessments in respiratory failure are not very accurate
- TPN for first 5 days appears safe, but did not improve outcomes
- Supplementing EN with TPN early in course has limited, if any, benefit (and ? harm)
- Limited data suggest starting EN in first 24 hours improves outcomes
- Initial Trophic or permissive underfeeding EN had similar outcomes to targeting full EN

# QUESTIONS???