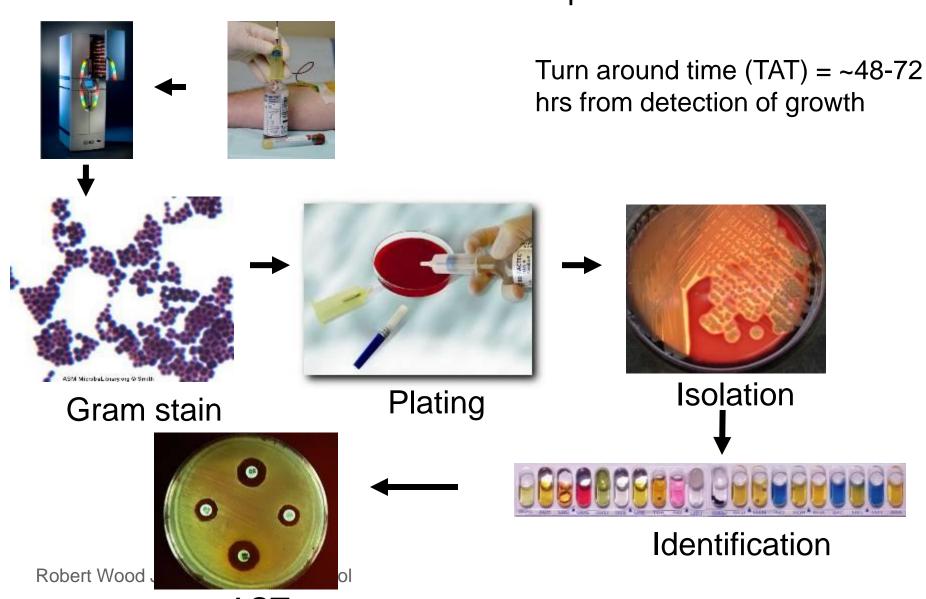


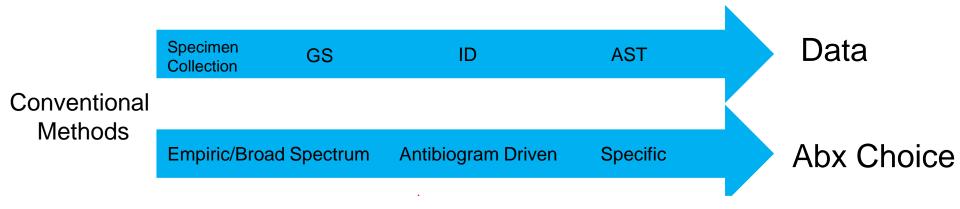
The Role of the Clinical Laboratory in Antimicrobial Stewardship

Thomas Kirn MD PhD
Director of Infectious Disease Diagnostics
Depts. of Pathology & Laboratory Medicine and Medicine
Rutgers Robert Wood Johnson Medical School
Director, New Jersey Public Health and Environmental Laboratories



Clinical laboratory support for ASPs

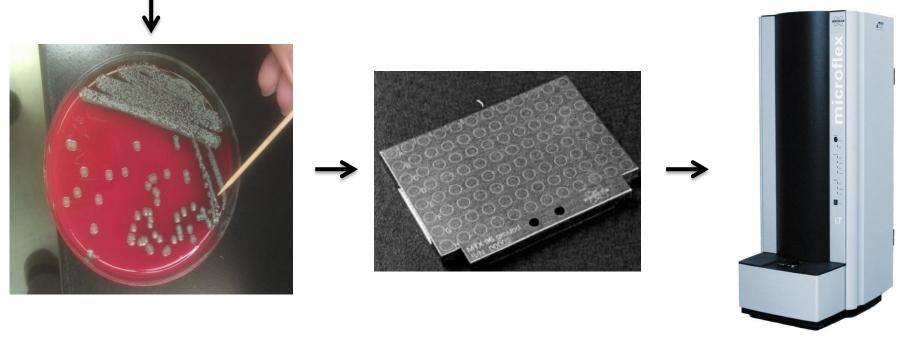
- AST result cascading
- Selective work up/reporting of culture results
- Stat testing for PCT and other biomarkers
- Diagnostic testing stewardship/consultation
- Rapid diagnostic assays that provide early pathogen identification and antimicrobial resistance information
 - Blood cultures
 - Other specimen types



Conventional methods for BSI workup

Clinical decisions based on laboratory data using conventional methods

Clinical Goals for Rapid Diagnostic Testing in the Setting of BSI


- Ensure early effective therapy
 - Time to effective therapy in sepsis is related to outcome
 - While most patients receive effective, broad spectrum therapy well before diagnostic test results are available this is not always the case
 - In some instances, targeted therapy has been proven superior to empiric effective therapy
 - · For e.g., nafcillin vs vancomycin for MSSA bacteremia
 - In other cases, organisms with unusual or unexpected resistance (CRE for example) may not be adequately covered in an atypical host
- Antimicrobial stewardship
 - Narrower therapy earlier to reduce selective pressure for emergence of MDROs
 - Reduce drug cost

The MALDI-TOF Revolution

Matrix Assisted Laser Desorption Ionization-Time Of Flight Spectrometry

Laser

Desorption

Ionization

Matrix-

Assisted

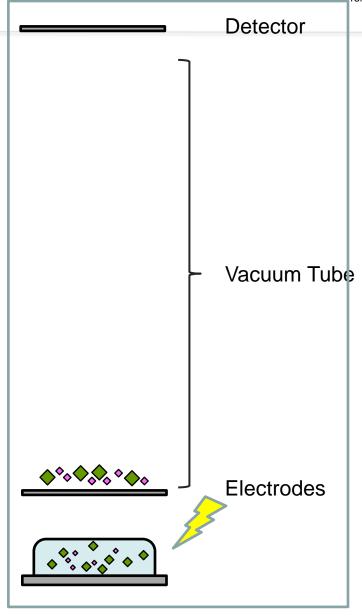
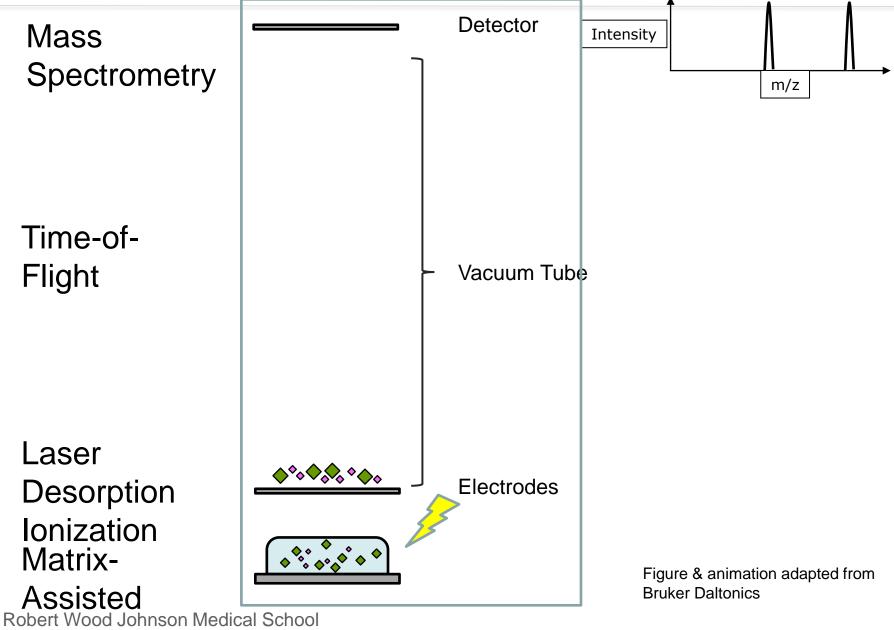
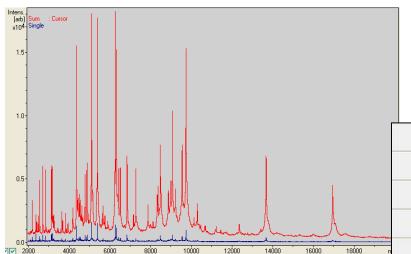



Figure & animation adapted from Bruker Daltonics


Robert Wood Johnson Medical School

MALDI-TOF Spectral Analysis

Spectral Pattern

Rank (Quality)	Matched Pattern	Score Value	NCBI Identifier
1 (+++)	Streptococcus agalactiae 03_198 CTL	2,357	<u>1311</u>
2 (+++)	Streptococcus agalactiae 04_158 CTL	2.352	<u>1311</u>
3 (+++)	Streptococcus agalactiae 03_145 CTL	2,347	<u>1311</u>
4 (+++)	Streptococcus agalactiae V29 CTL	2,346	<u>1311</u>
5 (+++)	Streptococcus agalactiae 03_102 CTL	2,321	<u>1311</u>
6 (++)	Streptococcus agalactiae DSM 6784 DSM	2.244	1311
7 (++)	Streptococcus agalactiae CNR 10 CTL	2,237	<u>1311</u>
8 (++)	Streptococcus agalactiae DSM 2134T DSM	2,075	<u>1311</u>
9 (+)	Streptococcus agalactiae DSM 16828 DSM	1.986	<u>1311</u>
10 (-)	Streptococcus equi ssp zooepidemicus ATCC 43079T THL	1 542	40041

Organism Identification



MALDI-TOF Advantages

- Accuracy
 - Conventional 90-95%
 - MALDI-TOF >95%
- Speed
 - Biochemical 6-18hrs
 - MALDI-TOF 5 mins
- Cost
 - Conventional automated panel \$5-10
 - MALDI TOF \$0.25-0.50
- Combined with direct AST methods, actionable results may be generated 24-48 hrs earlier than conventional methods

BioFire FilmArray BCID

Robert Wood Johnson Medical School

Gram-positive bacteria

Enterococcus

Streptococcus

Listeria monocytogenes

Staphylococcus aureus

Streptococcus agalactiae Streptococcus pneumoniae

Staphylococcus

Streptococcus pyogenes

Gram-negative bacteria

Acinetobacter baumannii

Enterobacteriaceae

Haemophilus influenzae

Enterobacter cloacae complex

Neisseria meningitidis

Escherichia coli

Pseudomonas aeruginosa Klebsiella oxytoca

Klebsiella pneumoniae

Proteus

Serratia marcescens

Yeast

Candida albicans

Candida parapsilosis

Candida glabrata

Candida tropicalis

Candida krusei

Antimicrobial resistance genes

mecA - methicillin resistance

vanA/B - vancomycin resistance

KPC - carbapenem resistance

Nanosphere Verigene BC-GN Panel

TARGETS		
Species		
Escherichia coli ⁱ		
Klebsiella pneumoniae		
Klebsiella oxytoca		
Pseudomonas aeruginosa		
Serratia marcescens		
Genus		
Acinetobacterspp.		
Citrobacter spp.		
Enterobacterspp.		
Proteus spp.		

Resistance

CTX-M (ESBL)

IMP (carbapenemase)

KPC (carbapenemase)

NDM (carbapenemase)

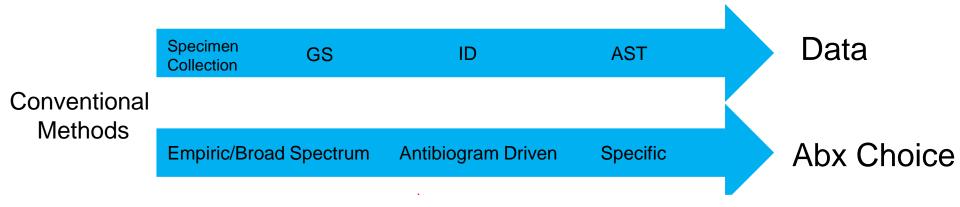
OXA (carbapenemase)

VIM (carbapenemase)

Nanosphere Verigene BC-GP Panel

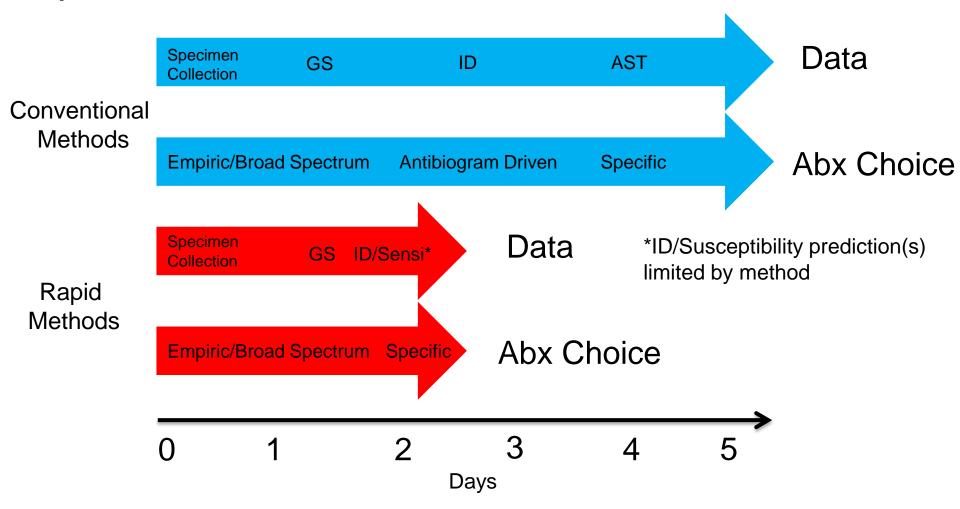
TARGETS
Species
Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus lugdunensis
Streptococcus anginosus Group
Streptococcus agalactiae
Streptococcus pneumoniae
Streptococcus pyogenes
Enterococcus faecalis
Enterococcus faecium
Genus
Staphylococcus spp.
Streptococcus spp.
Micrococcus spp.
Listeria spp.

Resistance	
mecA (methicillin)	•
vanA (vancomycin)	•
vanB (vancomycin)	•



BC Panels/Single Target Assays Summary

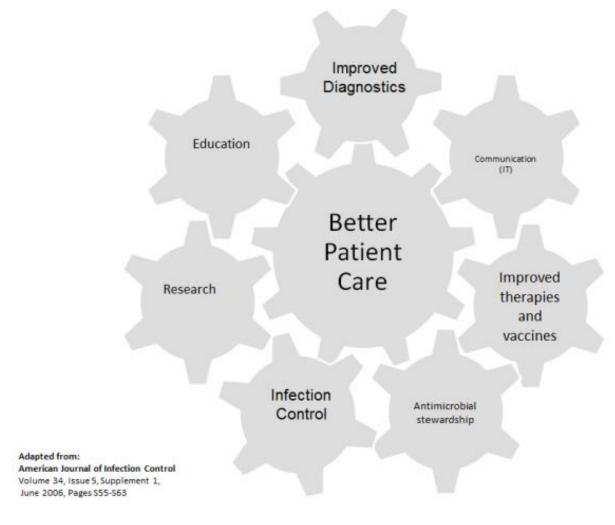
- All performed on broth from signal positive BC bottles
- TAT 1-3 h
- Hands on time minimal
- Bacterial, fungal targets + resistance genes
 - Resistance gene detection is not "assigned" to identified organisms in multiplex assays
- Generally excellent performance characteristics
 - 93-98% accuracy for identification
 - 93-100% agreement for resistance marker detection
 - Better agreement with single pathogen BCs vs polymicrobial cultures
 - Reduced time to ID/resistance marker detection



Clinical decisions based on laboratory data using conventional methods

Expected impacts of rapid ID and susceptibility prediction on antibiotic selection

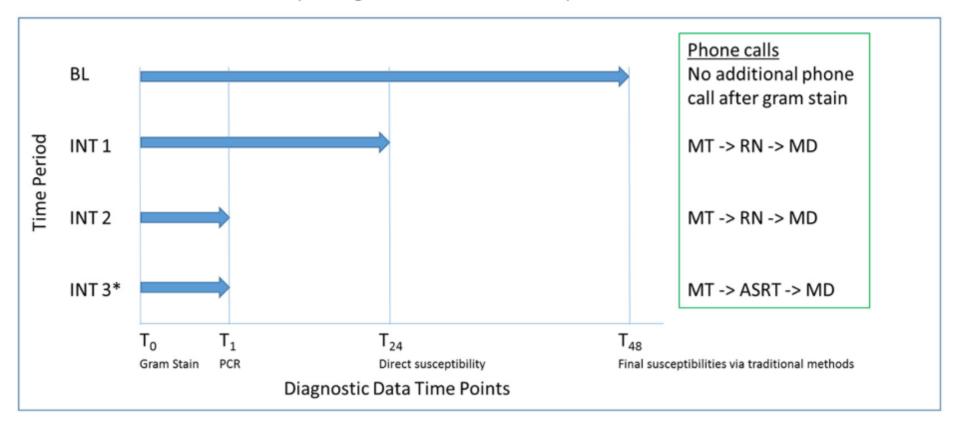
Robert Wood Johnson Medical School



Multiplex BC Panels – Clinical Impact

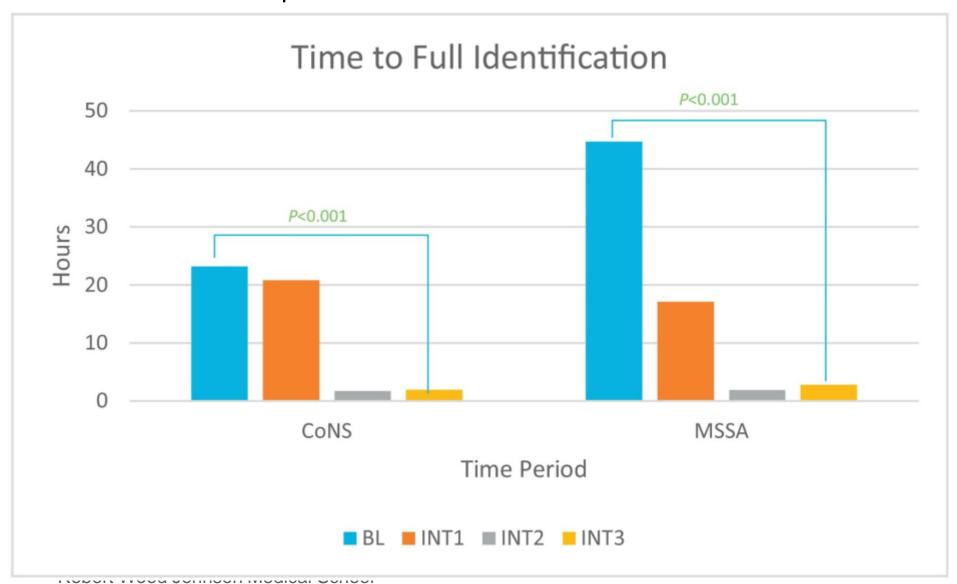
- The intervention by an infectious disease and/or critical care pharmacist on 74 patients with enterococcal bacteremia led to a significant decrease in the mean time to appropriate antimicrobial therapy in the postintervention group (23.4 h; P = 0.005) compared with the preintervention group.
- Clinical and economic outcome evaluation on 156 patients showed that the mean time to switch from empiric vancomycin to cefazolin or nafcillin in patients with methicillin-susceptible *S. aureus* bacteremia was 1.7 days shorter (P = 0.002), the mean length of stay was 6.2 days shorter (P = 0.07), and the mean hospital costs were \$21,387 less (P = 0.02) after PCR.
- Reductions in time to acceptable antibiotic overall (1.9 versus 13.2 h, respectively; P = 0.04) and time to appropriate antibiotic for patients with vancomycin-resistant Enterococcus (4.2 versus 43.7 h; P = 0.006) and viridans group Streptococcus (0.2 versus 7.1 h; P = 0.02).

Communication of results is critical

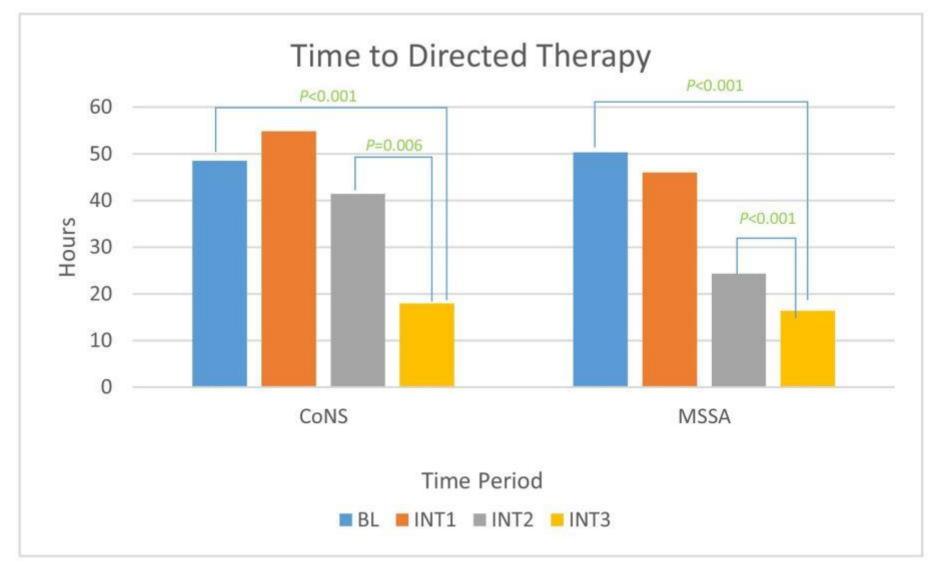


Robert Wood Johnson Medical School

RWJUH Data – Rapid ID/AST of GPC in Clusters from Blood Cultures


Time to ID/susceptibilities and Contact Sequence During Rapid Diagnostic Interventions Compared to Baseline

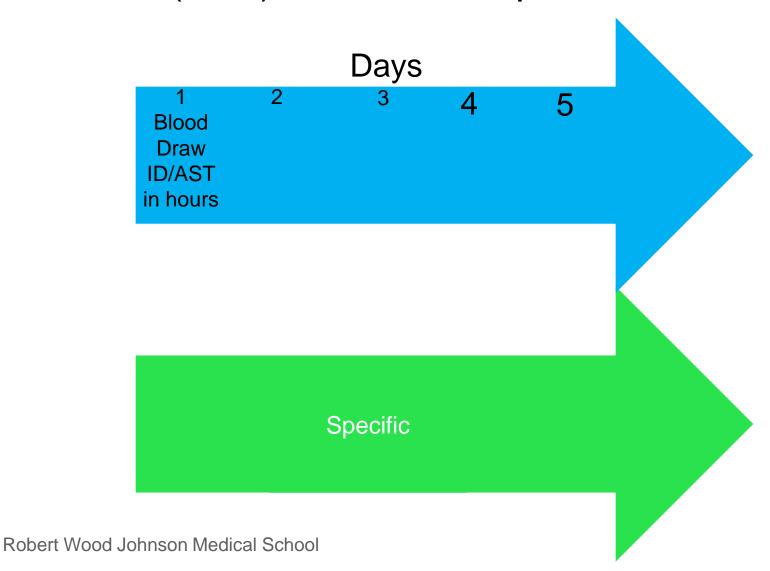
Diagnostic Microbiology and Infectious Disease xxx (2018) xxx–xxx


RWJUH Data – Rapid ID/AST of GPC in Clusters from Blood Cultures

Diagnostic Microbiology and Infectious Disease xxx (2018) xxx-xxx

RWJUH Data – Rapid ID/AST of GPC in Clusters from Blood Cultures

Diagnostic Microbiology and Infectious Disease xxx (2018) xxx–xxx

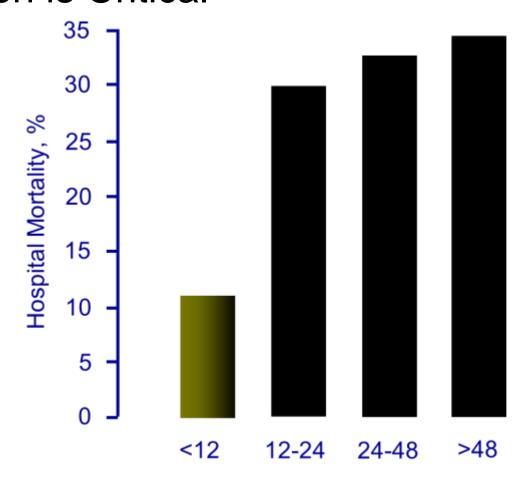


Direct Detection of Pathogens in Blood Specimens

Direct ID/(AST) from Blood Specimens

September 2014: FDA clearance of T2Dx Instrument and T2Candida Panel for direct detection of *Candida* species in human whole blood specimens

May 2018: FDA clearance of T2Bacteria Panel for detection of bacteria in whole blood samples of patients with suspected BSI



Candidemia Risk and Outcomes

- High Risk Patients
 - Abdominal surgery
 - Neutropenia
 - Transplant
 - Prematurity
 - Elderly
- Exposures that increase risk
 - ICU > 7 days
 - CVC
 - Dialysis
 - Abx
 - TPN
 - Colonization
- Outcomes
 - ~40% Mortality
 - Average excess LOS ~30d

Appropriate and Timely Rx for Candida Infection is Critical

Delay in Start of Antifungal Treatment, h

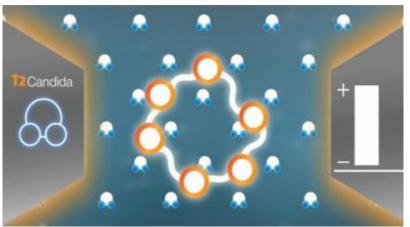
Robert Wood Johnson Medical School

Avoiding Unnecessary Candida Coverage

- Reduced cost
- Reduced toxicity
- Reduced selective pressure for resistance

Advantage: Relatively Predictable Antibiogram for *Candida spp*.

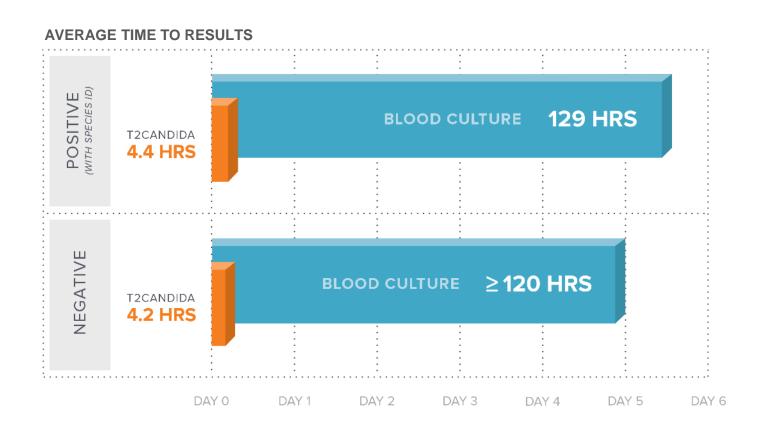
Candida spp.	AMB*	FLUC	ITRA	VOR	Echino-candins
C. albicans	S	S	S	S	S
C. tropicals	S	S	S	S	S
C. parapsilosis	S	S	S	S	S/?
C. glabrata	S/NS	S^{DD} / R	S^{DD} / R	S / NS	S/R
C. krusei	S/NS	R	S^{DD} / R	S	S


S = susceptible: SDD = susceptible-dose dependent: R = resistant: L = intermediate: NS_non-susceptible

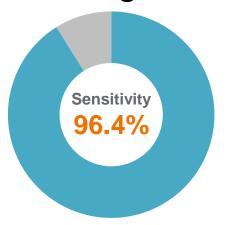
^{*} No established breakpoints

T2 Candida Test

Robert Wood Johnson Medical School


T2 Candida Result Reports

- Reports indicate
 - Negative for the 5 Candida species targets
 - Candida albicans/tropicalis detected
 - Recommend fluconazole
 - Candida parapsilosis detected
 - Use azole; higher MICs for echinocandins
 - Candida krusei/glabrata detected
 - Azole resistance/elevated MICs
 - Use echinocandin (e.g., micafungin)


T2Candida - Time to Result

SPECIES-SPECIFIC RESULTS IN HOURS VERSUS DAYS

T2Candida - Range of Negative Predictive Values

Prevalence of disease	Negative Predictive Value (NPV)
2%	99.93%
3%	99.89%
5%	99.81%
10%	99.60%
30%	98.47%

Additional T2Candida Data Analysis

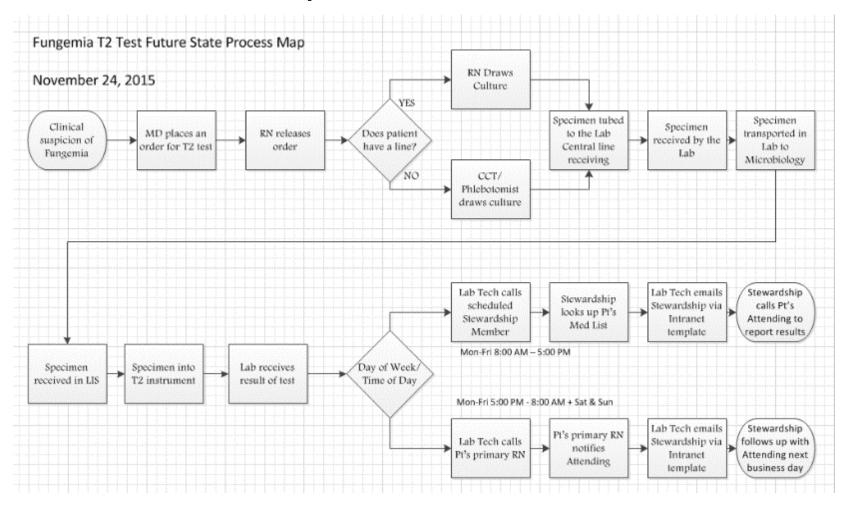
- REVIEW
 For reported orders, phase contact reputation fluturementions com

 T2MR and T2Candida: novel technology
 for the rapid diagnosis of candidemia and
 invasive candidiasis

 Michael A Pfaller **3, Donna M Welk* & Thomas J Lowery*
- In patients with proven and probable candidiasis:
 - T2Candida detected 53 of 55 cases. (96.4%)
 - Blood culture only detected 33 of 55 patients. (60%)

Summary of T2Candida detection of invasive candidiasis and candidemia			
Disease detected	T2Candida	Blood culture	Total <i>Candida</i> infections
Candidemia	31	33	33
Invasive candidiasis	12	0	12
Probable or suspected invasive candidiasis	10	0	10
Total cases	53	33	55
Sensitivity	96.4% (53/55)	60.0% (33/55)	

Robert Wood Johnson Medical School


Potential Benefits of T2Candida Assay

- Screen all high-risk patients with T2Candida to ensure you are diagnosing Candida species within 3-5 hours
- Rule out negative patients rapidly and de-escalate to reduce exposure, cost and resistance

Future State Map

RWJUH T2Candidemia Algorithm

Patients for whom antifungal therapy is being CONSIDERED

↓ Order T2Candida Test

Positive Negative

Start species specific antifungal therapy

Consider withholding antifungal therapy

Patients for whom antifungal therapy has been STARTED

↓ Order T2Candida

Test

Positive Negative

Start species specific antifungal therapy

Continue
current
empiric
therapy or
stop empiric
therapy

Implementation of T2Candida Test

- Live March 2016
- Target = Critically ill or immunocompromised patients
 - Medical/Cardiac/Surgical/Pediatric ICU
 - Oncology/Transplant
- Can be ordered by ID physicians on other units
- Education
 - Nursing (online training module)
 - Physicians (newsletter, presentations)
- Positive BC gram stain results called to pt's nurse (std)
- T2 results
 - Follow already established rapid diagnostic reporting scheme

Total Positive T2Candida Results

- From March 1, 2016 to April 1, 2018: 27 positive T2Candida patients
 - 15 C. albicans/C. tropicalis
 - **10** *C. parapsilosis*
 - 4 C. glabrata/ C. krusei
 - 2 patients also positive for *C. albicans/C. tropicalis* and *C. parapsilosis*
- By location: ICU versus medical floors
 - 19 ICU patients
 - 8 medical floor patients
 - 4 oncology units

Positive T2Candida, Negative Blood Cultures

- Total of 15 unique patients (up to March 1, 2018) with positive T2Candida and negative blood cultures – 11 ICU and 4 oncology units
 - 8 C. albicans/C. tropicalis, 6 C. parapsilosis, 1 C. glabrata/C. krusei

Characteristic	n (%)
Immunocompromised	8 (53)
Solid tumor	4 (27)
Hematologic malignancy	3 (20)
Kidney transplant	1 (7)
Median Charlson comorbidity index	6
Median Candida scores	9
Median SOFA score	6
14-day mortality	6 (40)
In-hospital mortality	8 (53)

Positive T2Candida, Negative Blood Cultures

- What were the clinical reactions to these results?
- Two patients on azole prophylaxis (hematologic malignancy)
 - → both patients escalated to echinocandin therapy
- Remaining 13 patients not on any antifungal therapy at time of positive T2Candida results → all started on antifungal therapy

Negative T2Candida Results

- From March 1, 2016 to April 1, 2018: 233 negative T2Candida results
 - 143 ICU patients
 - 40 oncology units
- Rough data from ID fellow project (research credit: Rashi Sharma)
 - March 1, 2016 to March 1, 2017
 - 90 negative T2Candida results (only first result per patient)
 - 50 not on antifungal therapy
 - 40 on empiric/prophylactic antifungal therapy → n=10 stopped, by median of 3 days

Negative T2Candida Results

- Reasons for continuing empiric antifungal therapy despite negative T2Candida result:
 - Standard-of-care antifungal prophylaxis for hematologic malignancy (13)
 - Positive blood culture results (6)
 - Continued empiric use for severe sepsis (11)
- Among 71 negative T2Candida/blood culture results who should not have routinely been on antifungal therapy, 60 were either not started or discontinued antifungals based on T2Candida result
- Among 36 surgical ICU patients, 19 were not given empiric antifungals

Rough Estimate of Cost Saving Implications

- Cost per test at RWJ= \$220
- Estimated cost of micafungin = \$70/day
- \$220 x 90 patients = \$19,800
- 14-day course of micafungin: (\$980 x 50) + (\$770 x 10) =
 \$56,700 cost saving on drug costs → \$56,700 \$19,800 =
 \$36,900 total cost saving
- 7-day course of micafungin: (\$490 x 50) + (\$280 x 10) =
 \$27,300 cost saving on drug costs → \$27,300 \$19,800 =
 \$7,500 total cost saving

Key Consideration in Clinical Practice

- T2Candida does not detect all pathogenic Candida species
 - Need for concomitant blood cultures
- Cases of negative T2Candida but positive blood cultures (before or after T2Candida result)
 - C. albicans, C. glabrata, C. parapsilosis
 - C. lusitaniae
 - C. guilliermondii
 - C. auris
- Most patients were admitted to the ICU or an oncology unit

Conclusions

- Clinical laboratories play an important role in antimicrobial stewardship and should be active participants in any ASP
- New molecular diagnostic assays that include susceptibility prediction components continue to enter the market and represent an important tool for antimicrobial stewardship
- While these assays almost always demonstrate excellent analytical performance characteristics, the optimization of clinical impact must be carefully considered, will require a team based approach in most cases and will likely vary significantly among institutions