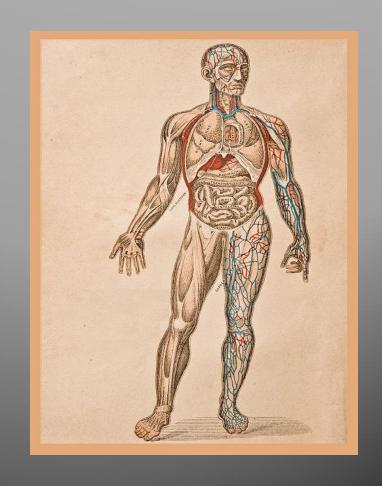
NJHA Pressure Injury Prevention Conference Pharmacologic Impacts on Wound Healing: Systemic and Topical Therapies

Janice M. Beitz, PhD, RN, CS, CNOR, CWOCN-AP, CRNP, MAPWCA, ANEF, FAAN

Professor of Nursing, WOCNEP Director School of Nursing-Camden Rutgers University, Camden NJ

Objectives

Participants will:


- ▶ 1) Discuss chronic illnesses and polypharmacy of wound patients in health care.
- Describe data around the effects of common medications on the inhibition or stimulation of wound healing
- Describe the impact of traditional vs. complimentary topical medications on wound healing.
- 4) Discuss clinical practices that can mitigate the inhibitory effects of certain medications on wound healing

Major Topics

- 1) Introduction and Background
- Polypharmacy in Wound Care
- Medications' Effects on Wound Healing: Literature-Based Data
 - Oral systemic and topical (traditional and alternative) therapies
- 4) Clinical Approaches to Promoting Wound Healing

Normal Wound Healing

- Human body "wired" to heal
- Despite many obstacles, most wounds heal
- Not here to discuss this comforting reality
- Here to discuss pharmacologic impact on wound healing and wound generation

Normal Wound Healing

- Four phases overlapping/special cells (keratinocytes, fibroblasts, endothelial cells, macrophages, platelets)
- Hemostasis platelets, growth factors (immediate)
- ▶ Inflammation macrophages, leukocytes, mast cells (day 1-4)
- Proliferation fibroblasts, myofibroblasts, endothelial cells
- Remodeling (maturation) (Day 21 2 years) (80% of original strength)

Stages of Wound Healing

Inflammation

- Cell recruitment (neutrophil, monocyte, lymphocytes, macrophage)
- Phagocytosis
- Debridement (PDGF, TGF,-B, TGF-A, IL-2, IFN, EGF, TNF-A)

Maturation

- Wound contraction
- Fibroblasts, epithelial cells
- Vascular maturation and regression
- Remodeling (TNF-A, IL-1, PDGF, TGF-B, EGF)

Hemostasis (Injury)

- Vascular constriction
- Platelet activation
- Blood clotting cascade
 (PDGF, TGF-B, TGF-A, EGF)

Proliferation

- Release of cytokines
- Cell growth and activation (epithelial cells, fibroblasts, endothelial cells)
- Neovascularization (angiogenesis)
- Granulation tissue formation (PGDF, TGF-B, FGF, IGF, IFN, TGF-A, EGF)

Chronic Wound (Armstrong & Meyr, UptoDate, 2018)

- Defined as wound that is physiologically impaired due to:
 - Inadequate angiogenesis
 - Impaired innervation
 - Impaired cellular migration
- Medications can affect any aspect of wound healing

Scope of Chronic Disease in United States: Mortality and Morbidity

- In 2015, top 10 leading causes of death accounted for approximately 75% of all US deaths
- In 2015, 2,712,630 Americans died (86,212 more than 2014) (CDC, 2018)

Top 10 Causes of Death

- 1) Heart Disease*
- 2) Cancer*
- 3) Chronic Lower Respiratory Disease*
- 4) Unintentional injuries
- 5) Stroke*

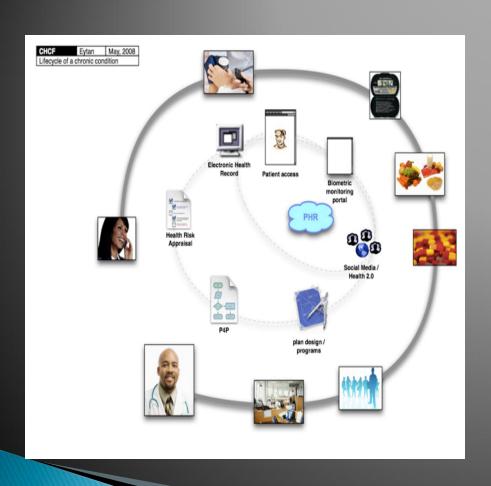
- 6) Alzheimer's Disease*
- 7) Diabetes*
- 8) Influenza/pneumonia
- 9) Kidney Disease*
- 10) Suicide

Chronic Diseases in USA

- As of 2012, half of all American adults had one or more chronic diseases
- Constitutes 117 million Americans
- Obesity serious health disorder approaching 50% are obese or overweight
- Diabetes mellitus type 2 pandemic
- Risk behaviors: Little or no exercise, poor dietary habits (fat, calories, salt), smoking (1 in 5 adults), alcohol abuse (CDC, 2018)
- Arthritis affects 53 million Americans

Chronic Diseases in USA

- 86% of all US healthcare spending in 2010 was for people with one or more chronic diseases
- In Americans over 65, 3 of 4 have multiple chronic conditions.
- 93% of total Medicare spending in 2012 was for people with multiple chronic conditions (CDC, 2018; CMS, 2012)


Chronic Wounds

- Pressure injuries focus of today's conference
- Venous ulcers
- Arterial ulcers
- Neuropathic (diabetic) ulcers
- Vasculitic and "other" ulcers
- Just about ALL wound patients are receiving medication therapy

Scope of Medication Impact

- Wound healing affected by many drugs and disease processes
- Nearly 50% of Americans take one prescription drug monthly
- Twenty percent take three drugs or more a month
- Eleven percent take five or more drugs (CDC, 2017)
- Thirty-six million Americans use herbals yearly (Ranade & Collins, 2014)
- U.S. herbal use grew for 12th straight year (Crane, 2016)

Critical Nexus: Cl and Polypharmacy

Medications Associated with Wound Healing *Delays*

- Anticoagulants
- Antimicrobials
- Aspirin/NSAIDs
 - NSAIDs impair fibroblasts; weaken wound contraction with long-term use
 - (Guo et al, 2010)
- Povidone/Iodine
- Colchicine

- Dakin's solution
 - Useful and safe if used diluted and for short-term
- Glucocorticoids
- Immunosuppressive agents
- Anti-angiogenesis agents

Medications Hindering Wound Healing

- Antineoplastic agents
 - Reduce RBC and WBC presence
 - Damage keratinocyte
 - May decrease VEGF and angiogenesis
- Colchicine
 - Reduces granulocyte migration
 - Reduces fibroblast synthesis

- Vasoconstrictors
 - Decrease tissue perfusion
- Anti-rheumatoid drugs
 - Methotrexate: cytotoxic to T cells and macrophages
- Nicotine and smoking (But NRT does NOT impair healing)

DMARDS and SSI/Delayed Wound Healing

- Kadota et al (2015) retrospective record review of 1036 elective orthopedic surgery patients
- Looked at risk factors for SSI and DWH
- Risk factors were foot/ankle surgery, total knee arthroplasty, and rheumatoid arthritis (RA) disease duration
- Looked at conventional synthetic DMARDs; looked at biologic DMARDs as variables
- Neither were risk factors
- ▶ Why?? drugs **stopped** 2–4 weeks before surgery
- Restarted infliximab in 4 weeks after surgery; others (Entanercept, Adalimumab, Tocilizumab, Golimumab)
 restarted after healing of surgical wounds

DMARDs and Wound Healing: Case Study

- Gaucher et al, 2017
- 53-year-old male with sarcoidosis and steroid-induced diabetes
- Receiving methotrexate and prednisone
- Developed LLE cellulitis
- Stopped prednisone
- Treated cellulitis
- Four rounds of skin grafting: stopped methotrexate
- Fifth skin graft was successful

Cancer Chemotherapy: Antiangiogenics (Choueiri & Sonpavde, 2018; McIntyre, 2015)

- Use is expanding
 - Bevacizumab (Monoclonal antibody; VEGF-A inhibitor)
 - Aflibercept (VEGF–A, VEGF–B)
 - Sunitinib (Tyrosine kinase inhibitor)
- Can cause impaired wound healing, osteonecrosis of jaw, hand-foot skin reaction, hand-foot syndrome, and bleeding

Steroids

- Notorious inhibitors of wound healing
- Notorious for systemic effects (hyperglycemia, osteoporosis, mood changes)
- Steroids affect cells by altering gene expression after crossing cell membrane
- Consequently affect almost every phase of wound healing
- Degree of inhibition related to <u>potency</u> of steroid
- Long-term usage impact is the challenge: bottom line is immune modulation (and associated derived risks)

Steroids: Specific Effects

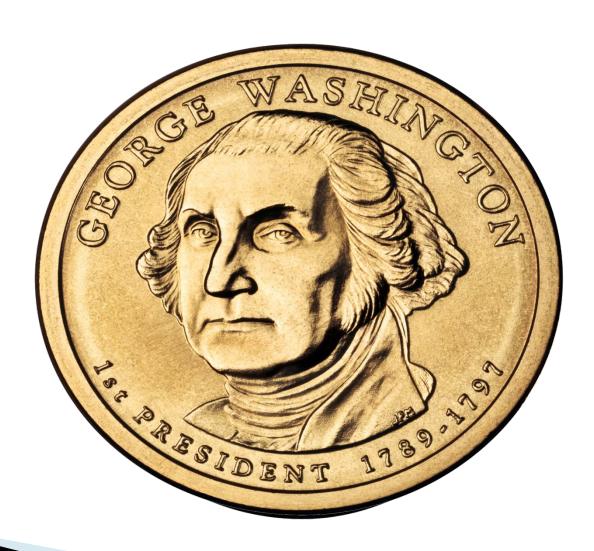
- Delay in removal of bacteria and foreign bodies
 - Decreased neutrophil and macrophage activity
- Decrease in epithelial regeneration and granulation activity (caused by steroids antimitotic activity)
- Decrease in fibroblast activity
- Over time thinned epidermis inhibits wound contraction
- Yet no problem with acute surgical healing if not long-term use (Treadwell, 2013; Wang et al, 2013)
- And when used topically may *help* healing (e.g., stasis dermatitis)

Non-Steroidal Anti-inflammatory Drugs (NSAIDs)

- Work by inhibiting Cyclooxygenase (COX)
- COX affects arachidonic acid and prostaglandins; blocking has serious effects
- NSAIDs have well known effect on delaying bone healing
- Krischak et al (2007): Found diclofenac inhibited fibroblasts after use in 10 rats (lab testing)
- Can affect ligament health too

NSAIDs and Long Bone Fracture Healing (Jeffcoach et al, 2014)

- Retrospective study of all orthopedic patients with femur, tibia, and/or humerus fractures between October 2009 and September 2011 - University of Tennessee Level 1 Trauma Center
- ▶ 1,901 patients with LBFs
- Assessed for complications: Nonunion/malunion, infection
- 60 patients had complications
- Logistic regression calculated ORs
- Patient more likely to have complication if received NSAIDs postop (OR 2.17) or if they were smokers (OR 3.19)
 - Recommend avoidance of NSAID use in traumatic LBF


NSAID Use and Postoperative Gastrointestinal Surgery (Kotagal et at, 2016)

- Large retrospective study of adult GI surgery patients between 2008 and 2012
- Among 398,752 patients, 55% underwent colorectal surgery and 45% had non-colorectal GI surgery.
- Five percent of all received ketorolac (IV)
- These patients had higher odds of re-intervention (OR 1.20), emergency room visit (OR 1.44) and 30-day readmission (OR 1.11) and readmission for anastomotic complications (OR 1.2)
- Use great caution when using IV ketorolac in patients undergoing GI surgery

Animal Studies Give Some Insights: Arslantas (2015)

- Tested 42 rats with oral sildenafil (10mg/kg) in 1cc distilled water via NG tube vs. sodium chloride injection in intraperitoneum (21 exp; 21 control)
- Created an ischemic skin wound on rats' abdomens
- Checked healing at days 3,5,10 on 7 rats in each group
- Theoretically sildenafil (PDE-5 inhibitor) should help healing
- Sildenafil significantly <u>reduced</u> re-epithelialization, neovascularization, granulation tissue and number of inflammatory cells on day 3
- Increased inflammatory cells on day 10
- Oral vs. <u>Topical</u> sildenafil: have differential effects
 on wounds

Other Side Of The Coin

Medications *Improving*Wound Healing

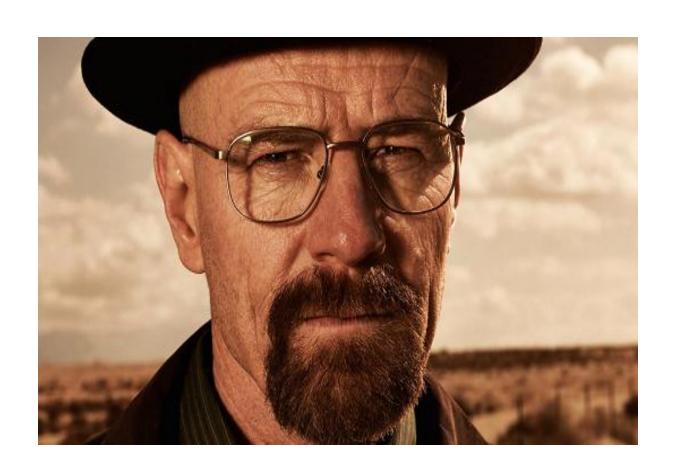
- Hemorrheologics (e.g., pentoxifylline (Trental)
- Hormones (estrogen): topical
- Phenytoin (think gums): topical (Cochrane Review by Hao et al, 2017)
- Prostaglandins
- Zinc (need correct balance)
- Vitamins A and C

Medications *Improving* Wound Healing

- Topical "Natural" Medications (more later)
 - Aloe vera
 - Curcumin
 - Ginger
 - Medicinal Honey (Cooper, 2017)
 - Mucilage (in Slippery Elm)
 - Witch Hazel
- Off Label Topical Traditional Drugs (more later)
 - Calcium Channel Blockers
 - Topical Regular Insulin (Shridharan et al, 2017)
 - Topical Nitroglycerin

Medications *Improving* Wound Healing

- Off Label Topical Traditional Drugs
 - Topical Dilantin (Phenytoin) (Hao et al, 2017)
 - Topical Hemoglobin (Hunt, 2017)
 - Topical Timolol (0.5%) (Chen et al, 2018)
 - Topical Tadalafil (Cialis) (Davenport et al, 2015)
 - Topical Tacrolimus (Ginocchio et al, 2017)
 - Topical Sucralfate (Godhi et al, 2017)
 - Topical Propanolol (1%) (Zileng et al, 2017)


Clinical Wake Up Call

- Polypharmacy is the norm
- Co-morbidities are common
- Drugs involved in <u>all</u> wound patients care


Case Study From Real World

- 94-year-old female admitted from home; cared for by son who is devoted to her; sits at bedside; multiple co-morbidities including dementia, poor nutrition, immobility and frailty
- Consultation for wound care team: has pressure injuries on sacrum, bilateral hips and sternum
- Also has "rash" on extremities and trunk
- Multiple medications; nothing new except recently began Aricept (donepezil)

Drugs Can "Break Bad"

Drugs Can CAUSE Wounds

Cutaneous Adverse Drug Reactions

- One of most common adverse reactions
- Overall incidence rate of 2-3% in hospitalized patients
- Almost any (1:1000 hospitalized patients (Ijaz, 2015)) medication can induce skin reactions
- Selected drug classes have rates as high as 5% (Lee & Thomson)
- Some reactions are immunological; most are not (thankfully)
- Categorized by predictability (pharmacological) or immune basis

Type A/Type B Categories

Type A: 85–90% of adverse drug reactions (ADEs); *predictable* from known pharmacologic properties of a drug. Examples:

- Diarrhea Antibiotics
- Gastritis NSAIDS
- •Kidney toxicity Aminoglycosides (Kaniwa et al, 2013)

Type A/Type B Categories

Type B: 10–15% of ADEs hypersensitivity: Immunologic or other patho-mechanisms; have signs/symptoms <u>different</u> from action of drug usually <u>not</u> predictable.

Examples: Exaggerated sensitivity to known drug reactions – tinnitus from low dose aspirin (Kaniwa et al, 2013)

Immunological (Hypersensitivity) Reactions

Type I: Cased by drug/antigen specific IgE that links with mast cells and basophils – immediate release of histamine/leukotrienes get urticaria, angioedema, anaphylaxis (aspirin, penicillins)

Type II: Cytotoxic reactions based on IgG or IgM – mediated mechanisms antibody ruptures cell (blood cell dyscrasias like hemolytic anemia and thrombocytopenia)

Immunologic (Hypersensitivity) Reactions

Type III: Mediated by intravascular immune complexes. Antibodies and drug antigens in circulation. Phagocytes remove complexes and ends up in skin, kidneys, etc. (serum sickness, vasculitis)

Type IV: Mediated by T cells; cause "delayed" hypersensitivity (contact dermatitis, SJS and TENS)

Uncommon Drug Offenders (*Rarely* Cause Skin Eruptions)

Antacids	Muscle Relaxants
Antihistamines (oral)	Nitrates
Atropine	Nystatin
Benzodiazepines	Oral Contraceptives
Corticosteroids	Propanolol
Digoxin	Spironolactone
Ferrous Sulfate	Theophylline
Insulin	Thyroid Hormones
Laxatives	Vitamins
Local Anesthetics	

Type of Skin ADEs

- Exanthems
- Fixed Drug Eruptions (Allergic)
- Blistering
- Psoriasisiform
- Immune Mediated (SJS and TEN)
- Hematologic/Vasculitic

Risk Factors for Skin ADE

- History of atopy
- Viral infections (e.g., HIV, Hepatitis C)
- Female gender
- Genetic polymorphism
- Connective tissue disorders
- Solid organ cancers (ljaz, 2015)

Exanthem Response

Blistering: Bullous Pemphigoid

Hematologic: Warfarin Necrosis

Common Drug Offenders: Exanthems

- Allopurinol
- Antimicrobials (PCN, Cephalosporins, Erythromycin, Gentamicin, Anti-TB Drugs, Nitrofurantoin, Sulfa)
- Barbiturates
- Captopril
- Carbamazepine
- Furosemide
- Gold Salts
- Lithium
- Phenothiazine
- Phenytoin
- Thiazides

Common Drug Offenders (Fixed Drug Eruption - Same Site*)

- ACE Inhibitors
- Allopurinol
- Antimicrobials (Sulfa, Tetracyclines, Cephalosporins, PCN, Clindamycin, Trimethoprim, metronidazole)
- Barbiturates
- Benzodiazepines
- Calcium Channel Blockers
- Carbamazepine
- Fluconazole
- Lamotrigine
- NSAIDs
- Paclitaxel
- Proton Pump Inhibitors (Omeprazole, Lansoprazole)
- Salicylates
- Terbinafine
 - *Reaction at same site or sites each time drug is taken

Common Drug Offenders Blistering Reactions

- ACE Inhibitors (captopril, enalapril)
- antibiotics (cephalosporins, penicillins, sulfa agents, tetracyclines, vancomycin)
- gold/sodium aurothiolamar
- lithium
- loop diuretics (eg, furosemide, bumetanide)
- nonsteroidal anti-inflammatory drugs (NSAIDs)
- penicillamine
- thiazide diuretics (eg, hydrochlorothiazide)

Common Drug Offenders Causing Psoriasisiform Eruptions

- ACE-I
- Beta Blockers
- Chloroquine
- Digoxin
- Gold
- Interferons
- Lithium
- NSAIDs
- Terbinafine
- Tetracyclines
- TNF–Alpha Antagonists

SJS

TENS

Common Drug Offenders (SJS/TEN)

SJS	TEN
Barbiturates*	Allopurinol
Beta-Lactams	Anti-TB Drugs
Carbamazepine*	Barbiturates*
Chloropropamide	Carbamazepine*
Co-Trimoxazole	Gold*
Gold*	Griseofulvin
H2 Antagonists	Lamotrigine*
Lamotrigine*	Leflunomide*
Leflunomide*	
Macrolides	Nitrofurantoin
NSAIDs	NSAIDs*
Phenothiazines	Penicillins
Phenytoin*	Phenytoin*
Rifampicin	Salicylates
Sulfonamides*	Sulfonamides*
Tetracyclines*	Tetracyclines*
Thiazides	

^{*} Can cause both SJS and TEN

Common Drug Offenders (Vasculitis Reactions)

- Allopurinol
- Aspirin
- Beta-Lactam Antibiotics
- Carbamazepine
- Co-trimoxazole
- Diltiazem
- Erythromycin
- Furosemide
- Gold
- Hydralazine
- Methotrexate
- NSAIDs
- PTU
- Sulfasalazine
- Sulfonamides
- Thiazides
 - Thrombolytic Agents

Hematologic Dermatologic ADR

- > WISN: Warfarin-induced skin necrosis
- > HIT Syndrome
- WISN: occurs 3 to 5 days after dose of warfarin; often in patient with Protein C and Protein S deficiences
- Red painful plaques
- Progress possibly to hemorrhagic blisters, ulcers, necrosis (Clinard et al)

Warfarin Necrosis

Warfarin Necrosis

Hematologic ADR of Skin

- HIT Syndrome (Specifically HIT II)
 - Get loss of heparin due to Immune complex (HIT antibodies)
 - Get destruction of platelets from antibody complexes (Trautman et al, 2010)
 - Decreased platelets < 150,000
 - Get arterial and venous thrombosis
 - Necrosis of skin in fatty areas as abdomen, thighs
 - can also be blisters, purpura
 - Diagnosis: Use "4Ts Score" (Thrombocytopenia, timing of platelet fall, thrombosis and sequelae, other causes for thrombocytopenia) (Coutre, 2018)

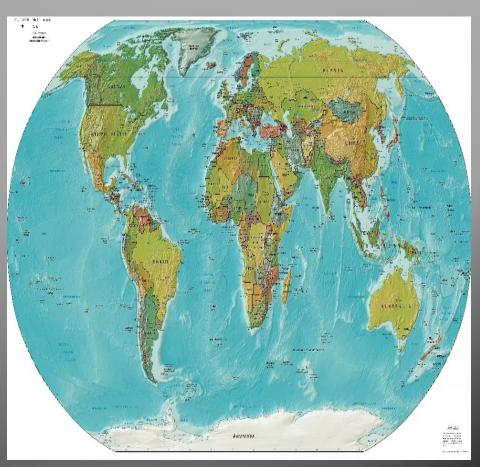
HIT Skin Necrosis

Heparin-Induced Thrombocytopenia Lesions

General Management Points SKIN ADEs

- Examine skin eruption closely and determine if drug-related
- Educate patient about avoidance of drug in future; record clearly in history
- If serious enough, Medic Alert bracelet
- Notify pertinent regulatory authorities if serious reaction (FDA FAERS (Federal Adverse Event Reporting System: www.fda.gov)

Understanding Nature of ADEs

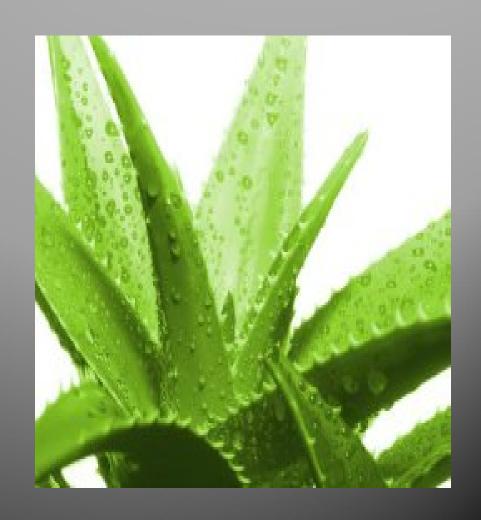

- Harkainen et al (2014) in a Finnish study of 463 patients looked at hospital records over 12 month time
- ▶ Total of 180 ADEs in 125 patients (27%)
- Of these 74(41%) were preventable; 95% caused temporary harm
- Most common ADE was abnormal blood potassium
- Risk was increased by duration of care and polypharmacy

- Literature describes off label use of traditional medication topically
- Literature describes topical application of non-traditional medications (called by various names: ehtnopharmacology, herbals, phytotherapy, ethnobotanicals, phytomedicine)

- All descriptions are variations on themes
- Both off label traditional and topical phytotherapy (phytochemicals) have common effects:
 - Anti-oxidative
 - Anti-inflammatory
 - Anti-microbial
 - Adaptogenic
 - Tissue regeneration (upregulates growth factors (e.g., VEGF)

- Substantive amount of literature on phytotherapy from developing countries (low resource communities)
 - Iran
 - Turkey
 - China
 - Brazil
 - Bolivia
 - Panama
 - Balkans of Europe
- WE have the opportunity to reverse science:
 to learn from those countries

- 80% of world's population depends on "traditional" (not Western) medicine
- In developed nations like the USA and the UK, 25% of medical drugs are based on plants and their derivatives (Alam et al. 2011)


- Trigonella Folenum
- Terminalia Bellirica
- Veronia Arborea
- Sesamum Indicum
- Lantana Camara

- Helianthus Annus
- Tridax Procumbens
- HydnocarpusWightiana
- Lepidum Sativum

- Achillea Millefolium (Yarrow) (Imtiyaz et al, 2017;
 Mohammadhosseini et al, 2017)
- Turmeric
 (Curcumin)
 (Bahramsoltani et al, 2017; Wound Healing Group, 2017)
 - Propolis (Cao 2017)

- Aloe Vera (Liliaceae)(Gebreseskel et al, 2018; Fox et al, 2017; Lobine et al, 2018)
- Sphaeranthus Indicus (Aster)
- Ageratum Conyzoides
- Hyptus suaveoulens
- Sambucus Ebolus (Dwarf Elder) (Jabbbarie et al, 2017)

- Tectona Gradis
- Carica Papaya
- Allium Cepa
- Tribulus Terrestris
- Morinda (Noni) (Chin et al, 2018; Torres et al, 2017)
- Anthocephalus Cadamba
- Piper (Piperaceae) (Durant-Archibold et al, 2018)

- Achyranthes (Chaff Flower) (He et al, 2017)
- Dracorhodin (Dragon's Blood) (Jiang et al, 2017)
- Ephedra Alata (Kittana et al, 2017)
- Cymboporon Nardus (Poaceae) (Kandimalla et al, 2016)
- Ligularia (Liu et al, 2018)
- Zingiber (Liu et al 2017)
- Calendula (Pot Marigold) (Nicolaus et al, 2017)
- Pinus Pinaster (Maritime Pine) (Tumen, 2018)

- Henna, Pomegranate, Myrrh (Elzayat et al, 2018)
- Salve and burdock (Actium weed) (Amish): Salve is honey, lanolin oil, wheat germ oil, marshmallow rot, aloe vera gel, wormwood, comfrey root, white oak bark, lobelia, beeswax, myrrh) (Flurry et al, 2017)
- Mimosa Tenuiflora (Freitas et al, 2017)
- Copaifera Oil (DeAlbuquerque et al, 2017;
 Ricardo et al, 20180

- Hypericum Perforatum (St. John's Wort) (Yucel, 2017)
- Acalypha Indica (Zahidin et al, 2017)
- Frankincense and Myrrh Oils (Grbic et al, 2018)
- Aromatherapy: Damask Rose Essence (Graner-Wizard, 2017)

Clinical Implications for Wound Professionals

- Take detailed accurate medication history
- Note use of all OTC medications especially herbals
- Note injections including vaccines or contrast media
- Note time of medication relative to onset of wound/skin problems (ADE)
- Take detailed medical history: Any history of drug sensitivity, contact dermatitis, connective tissue disease, atopy (asthma, eczema), previous wound healing delays

Addressing Wound Healing Inhibiting Factors

- Consider impact of hidden malnutrition (Protein insufficiency) on drug metabolism (protein binding and drug toxicities); does patient have fatigue, pain, mouth ulcers?
- Consider common drugs of age groups treated (in wound care and wound clinics mostly older)
 - Rheumatoid diseases and DMARDS (methotrexate and sulfasalazine etc.)
- Consider polypharmacy and need for "deprescribing"

Addressing Other Wound Healing Inhibiting Factors

- Effects of Aging on Drug Metabolism and Excretion
 - With aging, liver function decreases by 40% so drugs can be "stored" and cause toxicity
 - Kidney function decreases with age; better to use creatinine clearance rather than creatinine level in elderly to monitor levels; affects drug excretion
 - Selected drugs with greater harm in elderly:
 - Antipsychotics (haloperidol)
 - Hypnotics (diazepam)
 - Diuretics (furosemide) (Kaufman, 2015)

Addressing Other Wound Healing Inhibitors

- Usage of other "traditional" therapies
- Need to ask if patient is consuming any herbal products (teas, liquid extracts, capsules)
- Need to ask patient is applying any herbal topical preparation to wound
- 3) Potential for herbal-drug interaction:
 "Natural" does not mean safe
- 4) Does the patient space herbals away in time from other drugs (St. John's Wort, Cinkgo biloba, etc.)

Herbal Medicines and Wound Healing (Maver et al, 2015)

- Plant-based systems continue to play role in healthcare of 80% of world's developing countries
- Called "phytomedicines"
- Affordable and usually no to minimal side effects
- Level of evidence varies greatly

Top 10 Selling Herbals in USA (2012)

- Cranberry
- Garlic
- Saw Palmetto
- Soy
- Ginkgo Biloba
- Milk Thistle
- Black Cohosh
- Echinachea
- St. John's Wort
- Ginseng

- Flax seeds
- Wheat and Barley grass
- Turmeric
- Aloe Vera
- Blue Green Algae
- Milk Thistle
- Elderberry
- Saw Palmetto
- Echinachea
- Cranberry

Mainstream Markets

Natural/Health Markets

Practice Implications: Wound Care

- Need to identify detailed information on herbals used (dose, form, topical etc.)
- Need to identify "red-flag" medications for potential interactions (warfarin, digoxin, lithium, cyclosporine, protease inhibitors)
- Educate patient with wounds on safety, dosing, and potential toxicities of nonprescription pharmaceuticals (Ranade and Collins, 2014)

Practice Implications: Wound Care

- Reduce polypharmacy for wound patients by "de-prescribing"; interact with primary care provider
- Remember that polypharmacy is not only removing excess drugs but that polypharmacy is also going to more than one pharmacy (Gillette et al, 2015); educate patients about the risk
- Put on your ARMOR and LOOK at the wound patient

Practice Implications: ARMOR

A: Assess

R: Review

M: Minimize

O: Optimize

R: Reassess

- ▶ A: Beers criteria; Beta blockers, Pain meds; Antipsychotics
- R: D-drug interaction; Ddisease interaction; ADEs
- ► M: #of meds related to functional status
- O: for renal/hepatic status
- R: functional/cognitive status in one week from any changes and periodically

Meaning (Haque, 2008)

Mnemonic

Practice Implications: Wound Care

- Update oneself about alternative adjuncts to wound healing
- Repurposed approved drugs: Erythropoietin (EPO); excellent review of animal studies using exogenous EPO (Hamed et al, 2014); topical EPO accelerates wound healing
- Phyto-extracts in wound healing-excellent overview (Ghosh and Gaba, 2013) 450 plant species have wound healing properties
- Hydralazine has anti-angiogenesis effects (study done in rats and chicken models) (Zheng et al, 2016)

Summary

- Discussed multiple chronic conditions affecting wound patients
- Explored selected data for drugs that impair or assist wound healing
- Topical and Systemic therapies
- Offered implications for informed clinical practice

- Anderson K., Hamm, R.L. (2014). Factors that impair healing. *Journal of American College of Clinical Wound Specialists*, 4, 84–91.
- Arslantas, R., & Arslantas, M. (2015). Adverse effect of sildenafil on healing ischemic wounds: Results of an In vivo study. *Ostomy Wound Management*, 61(9), 32-37.
- Armstrong, D., & Meyr, A.J. (2018). Wound healing and risk factors for non-healing. *UpToDate*, Retrieved 8/30/2018 from <u>www.uptodate.com</u>
- Barnard, A.R., Regan, M., Burke, F.D., Chung, K.C., & Wilgis, E.F. (2012). Wound healing with medications for rheumatoid arthritis in hand surgery. *International Scholarly Research Network*, 2012, Article ID 251962, 5 pgs.

- Barrios, R.L., & Arbiser, J.L. (2011). Effectiveness of gentian violet and similar products commonly used to treat pyodermas. *Dermatology Clinics*, 29, 69-73.
- Bauer, K.A. (2018). Protein C deficiency: clinical manifestations and diagnosis. *UptoDate*. Retrieved 8/30/2018.
- Beitz, J. (2017). Breaking bad: Medications and wound healing. Ostomy Wound Management, 63(3), 18-35.
- Benhadou, F., Del Marmol, V. (2013). The mTor inhibitors and the skin wound healing. *EWMA Journal*, 13(1), 20–22.

- Bircher, A.J. (2017). Exanthematous (morbilliform) drug eruption. *UpToDate*, Retrieved 8/30/2018 from <u>www.uptodate.com</u>.
- Centers for Disease Control (2018). Health: United States, 2016. Retrieved September 5, 2018 from www.cdc.gov.
- Chin, K., & Cordell, B. (2013). The effect of tea tree oil (melaleuca alternifolia) on wound healing using a dressing model. *Journal of Alternative and Complementary Medicine*, 942-945.
- Choueri, T.K. Sonpavde, G. (2016). Toxicity of molecularly targeted antiangiogenic agents: Noncardiovascular effects. *UptoDate,* Retrieved December 15, 2016 from www.uptodate.com.
- Clinard, V., Smith, J. D. (2014). Drug-induced skin disorders. U.S. Pharmacist. Retrieved November 20, 2014 from www.medscape.com/viewarticle/763495_print.

- Common Side Effects, Allergies and reactions to antibiotics. *Drugs.com.* Retrieved November 20, 2014 from www.drugs.com/article/antibiotic-sideeffects-allergiesreactions.html.
- Cooper, KL. (2012). Drug reaction, skin care, skin lost. *Critical Care Nurse*, 32(4), 52–59.
- Crane, M. (2016). U.S. herbal supplement sales climb 7.5% in 2015. Nutritional Outlook, Retrieved August 8, 2017 from www.nutritionaloutlook.com
- Douglas, H.E. (2010). TGF-B in wound healing: A review. Journal of Wound Care, 19(8), 403-
- Dowd, S.E., Wolcott, R., Kennedy, J., Jones., C., & Cox, S.B. (2011). Molecular diagnostic and personalized medicine in wound care: Assessment of outcomes. *Journal of Wound Care*, 20(5), 232–239.

- Gaucher, S. Nicolas, C., Piveteau. O. Philippe, H.J. Blanche, P. (2017). Sarcoidosis and wound healing after cellulitis of the lower limb: Is methotrexate responsible for skin graft failure? *Wounds*, 29(8), 229–230.
- Gillette, C., Prunty, L, Wolcott, J Brodel-Zaugg, K. (2015). A new lexicon for polypharmacy: Implications for research, practice, and education. *Research in Social and Administrative Pharmacy*, 11(3), 468-471.
- Ghosh, P.K., & Gaba, A. (2013). Phyto-extracts in wound healing. *Journal of Pharmacy and Pharmaceutical Science*, 16(5), 760-820.
- Guo, S. & DiPietro, L. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 218–229.

- Greener, M. (2009). NSAIDs applied to the skin: a very topical subject. *Nurse Prescribing*, 7(7), 294–299.
- Hamed, S., Bennett, C.L., Demiot, C., Vulmann, Y., Teot, L., Desmouliere, A. (2014). Erythropoietin, a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair and Regeneration, 22, 23-33.
- Harding, K. (2014). Innovation and wound healing. Proceedings of the international surgical wound forum. *Journal of Wound Care*, 24(4), 7–13.
- ▶ Harding, K. (2014). Innovation and wound healing. Proceedings of the international surgical wound forum. *Journal of Wound Care*, 24(4), 7–13.
- Haque, R. (2009). ARMOR: A tool to evaluate polypharmacy in elderly persons. Annals of Long-Term Care, June, 26-30.
- Harkainen, M., Kervinen, M. Ahonen, J. Voutilainen, A. Turonen, H., & Vehvilaninen-Julkiunen, K. (2014). Patient-specific risk factors of adverse drug events in adult inpatinets-Evidence detected using the Global Trigger Tool method. *Journal of Clinical Nursing*, 24, 582-591.
- Harris, C.L., & Fraser, C. (2004). Malnutrition in the institutionalized elderly: The effects on wound healing. *Ostomy Wound Management*, 50(10), 54-63.
- Hashemi, S.A., Madani, S.A., & Abediankenari, S. (2015). The review on properties of aloe vera in healing of cutaneous wounds. *BioMed Research International*, 2015, Article ID 714216, 6 pages.

- Hollister, C., & Li, V.W. (2007). Using angiogenesis in chronic wound care with becaplermin and oxidized regenerated cellulose/collagen. *Nursing Clinics of North America*, 42, 457-465.
- Ijaz, N. (2015). Cutaneous drug rashes. *British Journal of Hospital Medicine*, 11(11), C166–169.
- Jeffcoach, D.R., Sams, V.G., Lawson, C.M., Enderson, B.L., Smith, S.T., Kline, H., Barlow, P.B., Wylie, D.R., Krumenacker, L.A., McMillen, J.C., Pyda, J., Daley, B.J., & University of Tennessee Medical Center, Department of Surgery (2014). Nonsterioidal anti-inflammatory drugs' impact on nonunion and infection rates in long-bone fractures. *Journal of Trauma Acute Care Surgery*, 76, 779-783.
- Kadota, Y., Nishida, K., Hashizume, K., Nasu, Y., Nakahara, R., Kanazawa, T., Ozawa, M., Harapa, R., Machida, T., Ozaki, T. (2016). Risk factors for surgical site infections and delayed wound healing after orthopedic surgery in rheumatoid arthritis patients. *Modern Rheumatology*, 26(1), 68-74.
- Kaniwa, N. & Saito, Y. (2013). Pharmacogenomics of severe cutaneous adverse reactions and drug-induced liver injury. *Journal of Human Genetics*, 58, 317–326.
- Karukonda, SRK, Flynn, TC, Boh, EE, McBurney, EI, Russo, G & Millikan, LE. (2000). The effects of drugs on wound healing. Part I. *International Journal of Dermatology*, 39(4), 250–257.
- Karukonda, SRK, Flynn, TC, Boh, EE, McBurney, EI, Russo, G & Millikan, LE. (2000). The effects of drugs on wound healing. Part II. *International Journal of Dermatology*, 39(5), 321–333.

- Kaufman, G. (2015). Multiple medicines: The issues surrounding polypharmacy. NRC, 17(4), 198-203.
- Khalil, H., Cullen, M., Chambers, H., Carroll, M., Walker, J., (2015). Elements affecting wound healing time: An evidence-based analysis. Wound Repair and Regeneration, 23, 550-556.
- Kotagal, M., Hakkarainen, T.W., Simianu, V.V., Beck, S.J., Alfonso-Cristancho, R., Flum, D.R. (2016). Ketorolac use and postoperative complications in gastrointestinal surgery. Annals of Surgery, 263(1), 71-75.
- Krischak, G.D., Augat, P., Claes, L., Kinzl, L., & Beck, A. (2007). The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats. *Journal of Wound Care*, 16(2), 76-8.
- Lee, A. & Thomson, J. (2006). Drug-induced skin reactions. *Adverse Drug Reactions*, 2, 125–156.
- Lindstrom, A., Ooyen, C., Lynch, M. E., Blumenthal, M. (2013). Herb supplement sales increase from 5.5% in 2012; Herbal supplements sales rise for the 9th consecutive year; turmeric sales sump 40% in natural channel. *Herbal Gram*, 99, 60–65.

- Maggiore, R. J., Dale, W., Gross, C. P., Feng, T., Ten, W.P., Mohire, S. G., Owusu, C., Klepin, H.D., Lichtman, S. M., Gajra, A., Ramani, R., Katheria, V., Zavala, L., Hurria, A., and Cancer and Aging Research Group (2014). Polypharmacy and potentially inappropriate medication use in older adults with cancer undergoing chemotherapy: Effect on chemotherapy-related toxicity and hospitalization during treatment. JAGS, 62, 1505-1512.
- Marrs, J., & Zubal, B.A. (2009). Oncology nursing in a new era: Optimizing treatment with bevacizumab. *Clinical Journal of Oncology Nursing*, 13(5), 564-572.
- Maver, T., Maver, V., Kleinschek, K., Smrke, D., & Kreft, S. (2015). A review of herbal medicines in wound healing. *International Journal of Dermatology*, 54, 740–751.
- McIntyre, K. (2015). An oncology nurses/ guide to new targeted agents for metastatic colorectal cancer. Clinical Journal of Oncology Nursing, 19(5), S71-S79.
- Nedorost, S. T. & Stevens, S. R. (2011). Diagnosis and treatment of allergic skin disorders in the elderly. *Drugs Aging*, 18(11), 827–835.
- Nijhuis, W., Houwing, R., Van der Zwet, W., Jansman, F. (2012). A randomized trial of honey barrier cream versus zinc oxide ointment. *British Journal of Nursing*, 21(20), S10–S13.

- Non-steroidal anti-inflammatory drugs and their skin side effects. (2014). *Dermnet NZ*, Retrieved November 20, 2014 from www.dermnetnz.org/reactions/nsaids.html.
- Peart, J. (2015). Influence of psychosocial factors on coping and living with a venous leg ulcer. Community Wound Care, June, 521-527.
- Pichler, W. (2003). Delayed drug hypersensitivity reactions. *Archives of Internal Medicine*, 139, 683–693.
- Pichler, W. (2018). Drug allergy: Classification and clinical features. *UpToDate,* Retrieved 8/30/2018 from www.uptodate.com.

- Poetker, D. M. & Reh, D. (2010). A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngology Clinics of North America, 43, 753-768.
- Price, P.E. (2008). Education, psychology and compliance. Diabetes/Metabolism Research and Reviews, 24(Suppl 1), S101– S105.
- Ranade, D. & Collins, N. (2014). Nutrition 411: An introduction to herbs for wound healing professionals. Ostomy Wound Management, 60(6), 10 pages. Retrieved 2/5/2016 from www.o-wm.com.
- Rochon, P. A. (2018). Drug prescribing for older adults. *UpToDate*, Retrieved 8/30/2018 from <u>www.uptodate.com</u>.
- Ryan T. (2003). Use of herbal medicines in wound healing. International Journal of Lower Extremity Wounds, 2(1), 22-24.
- Samel, A. D. & Chu, C. Y. (2018). Drug eruptions. *UpToDate*, Retrieved 8/30/2018 from <u>www.uptodate.com</u>

- Scott, I.A., Hilmer, S.N., Reeve, E., Potter, K., LeCouteur, D., Rigby, D., Gnjidic, D., Delmar, C.B., Roughead, E.E., Page, A., Jansen, J., & Martin, J. (2015). Reducing inappropriate polypharmacy the process of deprescribing. *JAMA Internal Medicine*, 175(5), 27–834.
- Shirin, J. (2015). Polypharmacy, the elderly, and deprescribing. *Consultant Pharmacist*, 30(9), 527–532.
- Smith, R. (2008). The effects of medications in wound healing. Podiatry Management, August, 195–202
- Sowicz, T. J. (2010). Atopic dermatitis: An evaluation of two clinical guidelines. *Dermatology Nursing*, 22(5), 9–11.
- Teng, M., Huang, Y., & Zhang, H. (2014). Application of stem cells in wound healing: An update. Wound Repair and Regeneration, 22, 151-160.
- Treadwell, T. (2013). Editorial Message: Corticosteroids and wound healing. Wounds, 25(10), 2 pages. Retrieved 12/28/2015 from www.wounds.research.com

- Vodovotz, Y. (2010). Translational systems biology of inflammation and healing. Wound Repair and Regeneration, 18, 3-7.
- Wallace, A. & Taylor, C. (2011). Recognizing how chemotherapy side effects can affect stoma care. *Cancer Nursing Practice*, 10(2), 20–25.
- Wang, A., Armstrong, E.J., Armstrong, A.W. (2013). Corticosteroids and wound healing: Clinical considerations in the perioperative period. *American Journal of Surgery*, 206(3) 410–417.
- Ward, K. E., Archambault, R., Mersfelder, T. L. (2010). Severe adverse skin reactions to nonsteroidal anti-inflammatory drugs: A review of the literature. *American Journal of Health-System Pharmacy*, 67, 206-213.

- Wigston, C., Hassan, S., Turvey, S., Bosanquet, D., Richards, A., Holloway, S., & Harding, K. (2013). Impact of medications and lifestyle factors on wound healing: A pilot study. Wounds UK, 9(1), 22–28.
- Zhang, Q., Lin, Z., Lin, X., Tang, L., Luo, H., Li, H., Zhang, Y., & Luo, W. (2016). In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. *European Journal of Pharmacology*, 779, 138-146.
- Zhu, J. & Weingart, S. N. (2018). Prevention of adverse drug events in hospitals. *UpToDate*, Retrieved 8/30/2018 from <u>www.uptodate.com</u>.
- N.B. See additional references and information in Beitz (2017)

- Ali, S., Gopalakrishnan, B., & Venkattesalu, V. (2017). Pharmacognosy, phytochemistry, and pharmacological properties of Achillea Millefolium L: A review. *Phytotherapy Research*, 31(8), 1140–1161.
- Arevalo-Lopez, D., Nina, N., Ticona, J., Limachi, I., Salamanca, E., Edaeta, E., Paredes, C., Espinoza, B., Serato, A., Garnica, D., Limachi, A., Coaquira, D., Salazar, S., Flores, N., Sterner, O., & Gimenez, A. (2018). Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia). *Journal of Ethnopharmacology*, 216, 120–133.
- Barillo, D.J., Barillo, A.R., Korn, S., Lam, K., & Attar, P.S. (2017). The antimicrobial spectrum of xeroform. *Burns*, 43(6), 1189–1194.

- Bahramsoltani, R., Rahimi, R., & Farzaei, H. (2017). Pharmacokinetic interactions of curcuminoids with conventional drugs: A review. *Journal of Ethanopharmacology*, 209, 1-12.
- Bowler, P. (2018). Antibiotic resistance and biofilm tolerance: A combined threat in the treatment of chronic infections. Journal of Wound Care, 27(5), 273-277.
- Cao, X., Chen, Y., Zhang, J., You, M., Wang, K., & Hu, F. (2017). Mechanisms underlying wound healing potential of propolis based on its antioxidant activity. *Phytomedicine*, 34, 76-84.
- Chen, L., Hou, Q., Zhoo, Z., Li, M., Zhung, L., Deng, X., Zhu, Z., Cheng, Z., Zhu, J., Xiang, C., He, W., & Fu, X. (2017). Comparative proteomic analysis of the effect of the four-herb Chinese medicine ANBP on promoting mouse skin wound healing. *International Journal of Lower Extremity Wounds*, 16(3), 154-162.

- Chen, L., & Tsai, T. (2018). The role of beta blockers in dermatological treatment: A review. *Journal of European Academy of Dermatology and Venereology*, 32, 363–371.
- Chin, C., Jalil, J., NG, P., NG, S. (2018). Development and formulation of moringa oleifera standardized leaf extract film dressing for wound healing application. *Journal of Ethnopharmacology*, 212, 188–199.
- Cooper, R. (2017). The use of honey in diabetic foot ulcers. The Diabetic Foot Journal 20(3), 154–159.
- Das, V., Behera, S., & Pramanik, K. (2017). Ethno-herbal-medico in wound repair: An incisive review. *Phytotherapy Research*, 31(4), 579–590.

- Deren, M.E., Ehteshami, J.R., Dines, J.S., Drakos, M.C., Bethrens, S.B., Doty, S., & Coleman, S.H. (2017). Simvastatin exposure and rotator cuff repair in a rat model. *Orthopedics*, 40(2), e288-e292.
- Durant-Archibold, A.A., Santana, A.I., & Gupta, M.P. (2018). Ethnomedical uses and pharmacological activities of most prevalent species of genus piper in Panama: A review. *Journal* of Ethnopharmacology, 217, 63-82.
- Edraki, M. Akbarzadeh, A. Hosseinzadeh, M. Tanideh, N. Salehi, A. Koohi-Hossseinabadi, O. (2014). Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Advances in Skin and Wound Care, 27, 317–323.
- ► Elsass, F. (2017). A sweet solution: The use of medical grade honey on oral mucositis in the pediatric oncology patient.

 Journal of WOCN, 35(Suppl) (44), S9–S9.

- Elzayat, E.M., Auda, S.H., Alanazi, F.K., & Al-Agamy, M.H. (2018). Evaluation of wound healing activity of henna, pomegranate and myrrh herbal ointment blend. Saudi Pharmaceutical Journal, 26, 733-738.
- Flurry, M.D., Herring, K.L., Carr, L.W., Hauck, R., & Potochny, J.D. (2017). Salve and burdock: A safe, effective Amish remedy for treatment of traumatic wounds? *Advances in Skin and Wound Care*, 30(5), 213–217.
- Fox, L.T., Mazumder, A., Dwivedi, A., Gerber, M., Duplessis, J., & Hamman, J.H. (2017). Invitro wound healing and cytotoxic activity of the gel and whole leaf materials from selected aloe species. *Journal of Ethnopharmacology*, 200, 1–7.

- Freitas, A.L., Santos, C.A., Souza, A.S., Nunes, M., Antoniolli, A.R., DaSilva, W., & da Silva, F. (2017). The use of medicinal plants in venous ulcers: A systematic review with meta-analysis. *International Wound Journal*, 14, 1019-1024.
- Garner-Wizard, M. (2017). Aromatherapy with damask rose essence reduces pain caused by treatment of burn injuries. *Herbalgram*, 114, 34–35.
- Gebremeskel, L., Bhoumik, D., Sibhat, G., & Tuem, K. (2018). In vivo wound healing and anti-inflammatory activities of leaf latex of aloe megalacantha baker (xanthorrhoeeaceae). Evidence-based complementary and alternative medicine. Article ID 5037912, 7 pages.

Https://doi.org/10.1155/2018/5037912.

- Ginocchio, L., Draghi, L., Darvishian, F., & Ross, F.L. (2017). Refractory ulcerated necrobiosis lipoidica: Closure of a difficult wound with topical therolimus. Advances in Skin & Wound Care, 30, 469-472.
- Godhi, A., Ram, P., & Powar, R. (2017). Efficacy of topical sucralfate versus silver sulfadiazine in the management of burns: A 1-year randomized controlled trial. *Journal of the West African College of Surgeons*, 7(1), 57-70.
- Gonzalez, J., Carvalho, A., Vallejo, R., & Amich, F. (2017). Plant-based remedies for wolf bites and rituals against wolves in the Iberian peninsula: Therapeutic opportunities and cultural values for the conservation of biocultural diversity. *Journal of Ehtnopharmacology*, 209, 124-139.

- Grbic, M., Unkovic, N., Dimkic, I., Janackovic, P., Gavrilovic, M., Stanojevic, O., Stupar, M., Vujisic, L., Jelikic, A., Stankovic, S., & Vukojevic, J. (2018). Frankincense and myrrh essential oils and burn incense fumes against micro-inhabitants of sacral ambients. Wisdom of the ancients? *Journal of Ethnopharmacology*, 219, 1-14.
- Hao, X.Y., Su, H., Cai, H., Guo, T.K., Liu, R., Jiang, L., & Shen, Y.F. (2017). Topical phenytoin for treating pressure ulcers (review). Cochrane Database of Systematic Reviews, Issue 2, art.no. CDoo8251.DOI:10.1002/14651858.CD0088251.pub2.
- He, X., Wang, X., Fang, J., chang, Y., Ning, N., Guo, H., Huang, L., & Huang, X. (2017). The genus Achyranthes: A review on traditional uses, phytochemistry, and pharmacological activities. *Journal of Ethnopharmacology*, 203, 260–278.

- Hernandez-Hernandez, A.B., Alarcon-Aguilar, F.J., Almanza-Perez, J.C., Nieto-Yanez, O., Olivares-Sanchez, J.M., Duran-Diaz, A., Rodriguez-Monroy, M.A., & Canales-Martinez, M.M. (2017). Antimicrobial and anti-inflammatory activities, wound healing effectiveness and chemical characterization of the latex of Jatropha Neopaociflora Pax. *Journal of Ethnopharmacology*, 204, 1-7.
- Hosseinkhani, A., Falahatzadeh, M., Raoofi, E., & Zarshenas, M.M. (2017). An evidence-based review on wound healing herbal remedies from reports of traditional Persian medicine. Journal of Evidence-based Complementary and Alternative Medicine, 22(2), 334-343.
- Hussain, M.B. (2018). Role of honey in topical and systemic bacterial infections. *Journal of Alternative and Complementary Medicine*, 24(1), 15-24.

- Jaric, S., Kostil, O., Mataruga, Z., Pavlovic, P., Pavlovic, M., Mitrovic, M., Pavlovic, P. (2018). Traditional wound-healing plants used in the Balkan Region (Souteast Europe). *Journal of Ethnopharmacology*, 21, 311–328.
- Jiang, X., Qiao, L., Liu, L., Zhang, B., Wang, X., Han, Y., & Yu, W. (2017). Dracorhodin perchlorate accelerates cutaneous wound healing in Wistar Rats. *Evidence-based Complementary and Alternative Medicine*, 2017, article ID 8950516, 9 pages. https://DOI.ORG/10.1155/2017/8950516.
- Kandimalia, R., Kalita, S., Choudhury, B., Dash, S., Kalita, K., & Kotoky, J. (2016). Chemical composition and anti-candidiasis mediated wound healing property of cymbopogon narous essential oil on chronic diabetic wounds. *Frontiers in Pharmacology*, 7, article 198, 1-8. DOI:10.3389/FPHAR.2016.00198.

- Khalil, H., Cullen, M., Chambers, H., & McGrail, M. (2017). Medications affecting healing: An evidence-based analysis. *International Wound Journal*, 14(6), 1340-1345.
- Kittana, N., Abu-Rass, H., Sabra, R., Manasra, L., Hanany, H., Jaradat, N., Hussein, F., & Zaid, A. (2017). Topical aqueous extract of ephedra alata can improve wound healing in an animal model. *Chinese Journal of Traumatology*, 20, 108–113.
- Lenzi, M., Malaguti, M., Cocchi, V., Hrelia, S., & Hrelia, P. (2017). Castanea sativa mill bark extract exhibits chemopreventive properties triggering extrinsic apoptotic pathway in Jurkat cells. *BMC Complementary and Alternative Medicine*, 17, 251. DOI:10.1186/S12906-017-1756-6.

- Levin, J. (2017). What is healing: Reflections on diagnostic criteria, nosology, and etiology. *Explore*, 13(4), 244–256.
- Levine, J.M. (2017). The effect of oral medication on wound healing. *Advances in Skin and Wound Care*, 30(3), 137–142.
- Liu, S., Tang, S., Liau, Z., Cui, C., Liu, H., Liang, Y., Zhang, Y., Xu, H., Zhang, D., Zheng, Y., Shi, H., & Li, S. (2018). The chemistry and pharmacology of ligularia przewalskii: A review. *Journal of Ethnopharmacology*, 219, 32–49.
- Liu, W., Tzeng, T., Liu, I. (2017). Healing potential of Zerumbone ointment on experimental full-thickness excision cutaneous wounds in rats. *Journal of Tissue Viability*, 26(3), 202–207.

- Lobine, D., Cummins, I., Govinpen-Soulange, J., Ranghoo-Sanmukhiya, M., Lindsey, K., Chazot, P., Ambler, C., Grellscheid, S., Sharpes, G., Lall, N., Lambrechts, I., Lavergne, C., & Howes, M. (2016). Medicinal mascarene aloes: An audit of their phytotherapeutic potential. *Fitoterapia*, 124, 120–126. https://dx.doi.org/10.1016/J.Fitote.2017.10.010.
- Magnusson, S., Baldursson, B., Kjartansson, H., Rolfsson, O., & Sigurjonsson, G.F. (2017). Regenerative and antibacterial properties of acellular fish skin grafts and human amnion/chorion membrane: Implications for tissue preservation in combat casualty care. *Military Medicine*, 182(3/4), 383-388.
- Marmitt, D., Bitencourt, S., Silva, A., Rempel, C., Goettert, M. (2018). The healing properties of medicinal plants used in the Brazilian public health system: A systematic review. *Journal of Wound Care*, (Supplement 6), 27, S4–S13.

- Meskini, M., Esmaeli, D. (2018). The study of formulated Zoush ointment against wound infection and gene expression of virulence factors. Pseudomonnis aeruginosa. *BMC Complementary and Alternative Medicine*, 18(1), 1 page.
- Mohammad Hosseini, M., Sarker, S., & Akbarzadea, A. (2017). Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology, 199, 257-315.
- Nicolaus, C., Junghanns, S., Hartmann, A., Murillo, R., Ganzera, M., & Merfort, I. 2017). Invitro studies to evaluate the wound healing properties of calendula officinalis extracts. *Journal of Ethnopharmacology*, 196, 94–103.

 Oliviera de Albuquerque, K., Silva da Vega, A., da Silva e Silva, J., Brigido, H., Ferreira, E., Costa, E., Marinho, A., Percario, S., & Dulabela, M. (2017) Brazilian amazon traditional medicine and the treatment of difficult to heal leishmaniasis wounds with copaifera. Evidence-based Complementary and Alternative Medicine, 2017, article ID 8350320, 9 pages.

HTTPS://DOI.ORG/10.1155/2017/8350320.

- Pang, C., Ibrahim, A., Bulstrode, N.W., & Ferretti, P. (2017). An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. International Wound Journal, 14(3), 450-459.
- Prescott, T.A.K., Homot, P., Lundy, F.T., Fang, R., Patrick, S., Camara-Leret, R., & Kiapranis, R. (2017). Tropical ulcer plant treatments used by Paua New Guinea's Apsokok nomads. Journal of Ethnopharmacology, 205, 240-245.

- Ricardo, L.M., Dias, B., Mugge, F., Leite, V., & Brandao, M.G.L. (2018). Evidence of traditionality of Brazilian medicinal plants: The cases of stryphnodendron adstringens (Mart.) Coville (Barbatimao) barks and Copaifera spp. (Copaiba) Oleoresin in wound healing. *Journal of Ethnopharmacology* 219–319–336.
- ➤ Saeidinia, A., Keihanian, F., Lashkari, A., Lahiji, H., Mobayyen, M., Heidarzade, A., & Golchai, J. (2017). Partial thickness burn wounds healing by topical treatment: A randomized controlled comparison between silver sulfadiazine and Centiderm. *Medicine*, 96(6), 1–9.
- Shanmugam, V.K., Couch, K.S., McNish, S., & Amour, R.L. (2017). Relationship between opioid treatment and rate of healing in chronic wounds. *Wound Repair and regeneration*, 25, 120–130.

- Sibbald, R.G., Elliott, J.A., Verma, L., Brandon, A., Persaud, R., Ayello, E. (2017). Update: Topical antimicrobial agents for chronic wounds. *Advances in Skin & Wound Care*, 30(10), 438–450.
- Sindhu, K., Cohen, B., & Gil, J. (2017). Perioperative management of rheumatoid medications in orthopedic surgery. *Orthopedics*, 40(5), 282–286.
- Sridharan, K., & Sivaramakrishnan, G. (2017). Efficacy of topical insulin in wound healing: A preliminary systematic review and metaanalysis of randomized controlled trials. Wound Repair and Regeneration, 25, 279-287.
- Tumen, I., Akkol, E., Tastan, H., Suntar, I., & Kurtca, M. (2018). Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus Pinaster Ait). *Journal of Ethnopharmacology*, 211, 235-246.

- Torres, M., Magalhaes, I., Mondego-Oliviera, R., SA, J., Rocha, A., Abreu-Silva, A., Torres, M., Magalhaes, I., Mondego-Oliviera, R., & Cortez-deSa, J. (2017). One plant, many uses: A review of the pharmacological application of Morinda Citrifolia. *Phytotherapy Research*, 31, 971-979.
- Upadhyay, R.K. (2018). Nutraceutical, therapeutic, and pharmaceutical potential of aloe vera: A review. *International Journal of Green Pharmacy*, 12(1) (Supplement), S51-S70.
- Uday, P., Maheshwari, M., Sharanappa, P., Nafeesa, Z., Kameshwar, V., Priya, B.S., & Nanjunda Swamy, S. (2017). Exploring hemostatic and thrombolytic potential of heynein – a cysteine protease from ervatamia heyneana latex. *Journal* of Ehtnopharmacology, 199, 316–327.

- Wagner, V., Webber, L., Ortiz, L., Rados, P. Varvaki, P., Meurer, L., Lameira, O., Rodrigues, R. & Martins, M. (2017). Effects of Copaiba oil topical administration on oral wound healing. *Phytotherapy Research*, 31(8), 1283–1288.
- Walton, E. (2014). Topical phytochemicals: Application for wound healing. Advances in Skin & Wound Care, 27(7), 328– 332.
- Wan, T., Li, L., Zhu, Z., Liu, S., Zhau, Y., & Yu, M. (2017). Scorpion venum active polyreptide may be a new external drug of diabetic ulcer evidence-based complementary and alternative *Medicine*, 2017, article 516565, 7 pages. https://DOI.ORG/10.1151/2017/5161565.
- Wound Healing and Management Group (2017). Evidence Summary: Turmeric (Curcumin) in wound management – Limited Resources Communities – LRCs). Wound Practice and Research, 25(3), 158–159.

- Wound Healing and Management Group (2017). Evidence summary: Wound Management – low resource communities: Banana Leaf Dressing. Wound Practice and Research, 25(3), 156–157.
- White, E. (2018). Plugging the wound: The development of haemostatics. Wounds, 14(3), 90.
- Wu, M., Li, Y., Guo, D., Kui, G., Li, B., Deng, Y., & Li, F. (2018). Microbial diversity of chronic wound and successful management of traditional Chinese medicine. *Evidence-based Complementary and Alternative Medicine*. 2018, article 9463295, 13 pages.

https://DOI.org/10.1155/2018/9463295.

- Yucel, A., Kan, Y., Yesilada, E., Akin, O. (2017). Effect of St. John's Wort (Hypericum Derforatum) oily extract for the care and treatment of pressure sores: A case report. *Journal of Ethnopharmacology*, 196, 236-241.
- Zahidin, N., Saidin, S., Zulfiki, R., Muhamed, I., Ya'Akob, H., & Nur, H. (2017). A review of acalypha Andica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. *Journal of Ethnopharmacology*, 207, 146–173.
- Zheng, Z., Liu, Y., Yang, Y., Tang, J., & Cheng, B. (2017). Topical 1% propranolol cream promotes cutaneous wound healing in spontaneously diabetic mice. Wound Repair and Regeneration, 25, 389-397.